$$I=\large \int_{0}^{\infty}\frac{\operatorname{arccot}\left(\sqrt{1+x}+\sqrt{2+x}\right)}{1+x}\mathrm dx$$
$\large u=\sqrt{1+x}$
$\large \mathrm du=\frac{1}{2\sqrt{1+x}}\mathrm dx$
$$I=2\large \int_{1}^{\infty}\frac{\operatorname{arccot}\left(u+\sqrt{1+u^2}\right)}{u}\mathrm du$$
$$I=\large 2\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}\int_{1}^{\infty}\frac{\mathrm du}{u(u+\sqrt{1+u})^{2k+1}}$$
Applying partial fraction decomposition would be very long.
How would we evaluate $I$?