I have this integral, $$I_n=\displaystyle \int_0^{\pi/2} \frac{x^n}{\sin ^n x} \ \mathrm{d}x, \qquad n\in \mathbb{Z}^+.$$ We have the results $$ \begin{align} I_1 & = 2C, \\ I_2 &= \pi\log 2, \\ I_4 & = -\frac{\pi^3}{12} + 2\pi\log 2 + \frac{\pi^3}{3}\log 2-\frac{3\pi}{2}\zeta(3), \end{align} $$ where $C$ is Catalan's constant. Can we prove any of these results, or make any progress on $I_3$, or the general case?
- 17,627
- 4,163
-
I think your best chance is a recurrence relationship of $I(n)$ in terms of $I(n-2)$ and/or $I(n-1)$. – Lucian May 08 '14 at 13:12
-
5$\displaystyle{\large I_{4}}$ must be $\displaystyle{\large\color{#c00000}{-,{\pi^{3} \over 12}} + 2\pi\ln\left(2\right) + {\pi^{3} \over 3},\ln\left(2\right) - {3\pi \over 2},\zeta\left(3\right)}$. – Felix Marin Jul 28 '14 at 02:55
-
1I have changed the formatting of the title so as to make it take up less vertical space -- this is a policy to ensure that the scarce space on the main page is distributed evenly over the questions. See here for more information. Please take this into consideration for future questions. Thanks in advance. – GNUSupporter 8964民主女神 地下教會 Mar 12 '18 at 16:59
6 Answers
For $n\in\mathbb{N}$ we have:
$$\int\limits_0^{\pi/2}\bigg(\frac{x}{\sin x}\bigg)^ndx=\sum\limits_{j=0}^{n-1}2^{n-j}\begin{bmatrix}n\\j+1\end{bmatrix}\sum\limits_{v=0}^j\binom{j}{v}(-n)^{j-v+1}\sum\limits_{l=1}^{\big\lfloor\frac{n+1}{2}\big\rfloor}\frac{(-1)^l\Big(\tfrac{\pi}{2}\Big)^{n-2l+1}}{(n-2l+1)!}f_n(2l-v),$$
with the Stirling numbers of the first kind $\begin{bmatrix}n\\k\end{bmatrix}$ defined by $\displaystyle\sum\limits_{k=0}^n\begin{bmatrix}n\\k\end{bmatrix}x^k:=\prod\limits_{k=0}^{n-1}(x+k),$
with $f_{2m-1}(s):=(-1)^{m-1}\beta(s),$ where $\beta(s)$ := Dirichlet $\beta$ function,
and $f_{2m}(s):=(-1)^{m-1}2^{-s}\eta(s),$ where $\eta(s)$ := Dirichlet $\eta$ function,
for $m\in\mathbb{N}$, with the analytical extensions $(s\in\mathbb{C})$
$B_n(x)$ are here the Bernoulli Polynomials.
$$\begin{align} \beta(1-s)&=\bigg(\dfrac{2}{\pi}\bigg)^s\sin\bigg(\dfrac{\pi s}{2}\bigg)~\Gamma(s)~\beta(s) \\\\ \eta(1-s)&=\dfrac{2^s-1}{1-2^{s-1}}~\pi^{-s}\cos\bigg(\dfrac{\pi s}{2}\bigg)~\Gamma(s)~\eta(s) \end{align}$$
and with the simplifications $(k\in\mathbb{N}_0)$
$$\begin{align} \beta(-2k-1)~&=~0 \\\\ \beta(-2k)~&=~-\frac{2^{4k+1}}{2k+1}~B_{2k+1}\bigg(\frac{1}{4}\bigg) \\\\ \beta(2k+1)~&=~(-1)^{k-1}~\frac{(2\pi)^{2k+1}}{2(2k+1)!}~B_{2k+1}\bigg(\frac{1}{4}\bigg) \\\\ \eta(1-k)~&=~\frac{2^k-1}{k}~B_k \\\\ \eta(2k)~&=~(-1)^{k-1}~\frac{2^{2k-1}-1}{(2k)!}~B_{2k}~\pi^{2k} \\\\ \eta(2k+1)~&=~\bigg(1-\frac{1}{2^{2k}}\bigg)\zeta(2k+1) \end{align}$$
Examples include:
$$\begin{align} \int\limits_0^{\pi/2}\bigg(\frac{x}{\sin x}\bigg)^1dx~&=~2\beta(2)\approx1.83 \\\\ \int\limits_0^{\pi/2}\bigg(\frac{x}{\sin x}\bigg)^2dx~&=~\pi\ln2\approx2.178 \\\\ \int\limits_0^{\pi/2}\bigg(\frac{x}{\sin x}\bigg)^3dx~&=~-6\beta(4)+\bigg(\frac{3}{4}\pi^2+6\bigg)\beta(2)-\frac{3}{8}\pi^2\approx2.64 \\\\ \int\limits_0^{\pi/2}\bigg(\frac{x}{\sin x}\bigg)^4dx~&=~-\frac{3}{2}\pi\zeta(3)+\bigg(\frac{\pi^3}{3}+2\pi\bigg)\ln2-\frac{\pi^3}{12}\approx3.27 \\\\ \int\limits_0^{\pi/2}\bigg(\frac{x}{\sin x}\bigg)^5dx~&=~90\beta(6)-\bigg(\frac{45}{4}\pi^2+100\bigg)\beta(4)+\bigg(\frac{45}{192}\pi^4+\frac{25}{4}\pi^2+10\bigg)\beta(2)- \\ &-\bigg(\frac{55}{384}\pi^4+\frac{5}{8}\pi^2\bigg)\approx4.135 \end{align}$$
- 11,518
-
1
-
2@BrevanEllefsen : Very kind of you, thanks ! (But: for a better rating I should explain more of course ... :-) ) – user90369 Aug 14 '17 at 08:27
-
-
@clathratus : I have to explain more, of course, but it's a lot, I need too much time for it. And my answer came 2 years too late. Therefore I wrote only the answer for interested people, not the whole explanation. If you like to do busywork, you should start with $\sin x = (e^{ix}-e^{-ix})/(i2)$, the rest comes on its own. By the way: You can also look at here for similar ideas. – user90369 Mar 03 '19 at 16:11
Integrating by parts 3 times,
$$ \begin{align} \int_{0}^{\pi /2} \frac{x^{4}}{\sin^{4} x} \ dx &= - \frac{x^{4}}{3} \cot(x) \left(\csc^{2} (x) +2 \right) \Bigg|^{\pi/2}_{0} + \frac{4}{3} \int_{0}^{\pi /2} x^{3} \cot (x) \left(\csc^{2} (x) +2 \right) \ dx \\ &= \frac{4}{3} \int_{0}^{\pi /2} x^{3} \cot (x) \left(\csc^{2} (x) +2 \right) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx + \frac{4}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \csc^{2}(x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx - \frac{2}{3}x^{3} \cot^{2}(x) \Bigg|^{\pi/2}_{0} + 2 \int_{0}^{\pi /2} x^{2} \cot^{2}(x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx + 2 \int_{0}^{\pi /2} x^{2} \cot^{2} (x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx -2x^{2} \Big( x + \cot(x) \Big) \Bigg|^{\pi/2}_{0} +4 \int_{0}^{\pi /2} x\Big(x+ \cot(x) \Big) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx - \frac{\pi^{3}}{4} + 4 \int_{0}^{\pi /2} x^{2} \ dx + 4 \int_{0}^{\pi /2} x \cot(x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx - \frac{\pi^{3}}{12} + 4 \int_{0}^{\pi /2} x \cot(x) \ dx . \end{align}$$
In general, $$ \int_{a}^{b} f(x) \cot(x) \ dx = 2 \sum_{n=1}^{\infty} \int_{a}^{b} f(x) \sin (2nx) \ dx .$$
So $$ \begin{align} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx &= 2 \sum_{n=1}^{\infty} \int_{0}^{\pi /2} x^{3} \sin (2nx) \ dx \\ &= 2 \sum_{n=1}^{\infty} \left(\frac{(-1)^{n-1} \pi^{3}}{16n} - \frac{(-1)^{n-1} 3\pi}{8n^{3}} \right) \\ &= \frac{\pi^{3}}{8} \ln (2) - \frac{3 \pi}{4} \eta(3) \\ &= \frac{\pi^{3}}{8} \ln (2) - \frac{9 \pi }{16} \zeta(3). \end{align}$$
And
$$ \begin{align} \int^{\pi /2}_{0} x \cot(x) \ dx &= 2 \sum_{n=1}^{\infty} \int_{0}^{\pi /2} x \sin(2nx) \ dx \\ &= -\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \\ &= \frac{\pi \ln 2}{2} . \end{align}$$
Therefore,
$$ \begin{align} \int_{0}^{\pi /2} \frac{x^{4}}{\sin^{4} x} \ dx &= \frac{8}{3} \left( \frac{\pi^{3}}{8} \ln (2) - \frac{9 \pi }{16} \zeta(3) \right) - \frac{\pi^{3}}{12} + 4 \left(\frac{\pi \ln 2}{2} \right) \\ &= - \frac{\pi^{3}}{12} + 2 \pi \ln(2) + \frac{\pi^{3}}{3} \ln (2) - \frac{3 \pi}{2} \zeta(3) . \end{align}$$
- 42,026
Integrating by parts, we have $$ \int \frac{x^2}{\sin^2 x} \, dx= -x^2 \cot x +\int 2x \cot x \, dx\\= -x^2 \cot x + 2x \ln \sin x - \int 2 \ln \sin x \, dx $$ Evaluating this between $0$ and $\pi/2$, we find that the boundary terms vanish (by taking the appropriate limits), so we are left with the well-known integral $$ -2 \int_0^{\pi/2} \ln \sin x \, dx =\pi \ln 2 $$
Edit: I have found a way to do $I_1$. Integrating by parts, $$ \int \frac{x}{\sin x} \, dx= x \ln \tan \frac{x}{2} - \int \ln \tan \frac{x}{2} \, dx $$ Evaluating between $0$ and $\pi/2$ yields $$ I_1 = -2 \int_0^{\pi/4} \ln \tan x \, dx\\ = -2 \int_{-\infty}^{0} x \frac{e^x}{1+e^{2x}} \, dx\\ = 2 \sum_{k \geq 0} (-1)^k\int_{0}^{\infty} x e^{-(2k+1)x} \, dx \\ = 2 \sum_{k \geq 0} (-1)^k \frac{1}{(2k+1)^2} \\ = 2C $$ as was to be proved.
- 5,856
Using a CAS, I obtained $$I_3=\frac{1}{256} \left(192 \left(8+\pi ^2\right) C-96 \pi ^2-\psi ^{(3)}\left(\frac{1}{4}\right)+\psi ^{(3)}\left(\frac{3}{4}\right)\right)$$ $$I_6=\frac{1}{320} \pi \left(40 \pi ^2 (-12 \zeta (3)-1+20 \log (2))+240 (15 (\zeta (5)-\zeta (3))+\log (16))+\pi ^4 (32 \log (2)-11)\right)$$
- 260,315
-
Are you will to share the name of the CAS? My old Maple give solutions only in terms of $\mathrm{polylog}(n,\pm i)$ and Wolfram Alpha shows only numerical values? – gammatester May 08 '14 at 12:28
-
It is a modiied version of Maxima. I must say that I got a lot of trouble with $I_5$. – Claude Leibovici May 08 '14 at 12:31
-
@ClaudeLeibovici : The maxima which I've installed (v5.24.0) can't integrate even when n=1. Is that modified version available online? – gar May 09 '14 at 10:38
-
7@gar. No, it is a version we have modified in my research team many years ago precisely for integration of very nasty functions we worked on at that time. If life is not too short, it is part of my plans to clean it up and propose it to whoever could be interested. – Claude Leibovici May 09 '14 at 10:51
-
3@ClaudeLeibovici : Oh, I see. That would be a great thing to do! Thanks for your time and work. – gar May 09 '14 at 10:56
-
Any chance life has allowed you to go public with your software package? As someone who works with integrals pretty constantly (generally recreationally) I would love to see a package that could produce these results be available – Brevan Ellefsen Aug 14 '17 at 02:03
-
@BrevanEllefsen. Be sure that, at the present time, this software is a mess and not user-friendly at all. If I had time (take into account my age !) and was in better conditions (almost blind !), I would be pleased to clean it and make it available. It is the result of a lot of work in my research group. Meanwhile, if you have anything you would like me to try, feel free to contact me (my e-mail address is in my profile). Cheers. – Claude Leibovici Aug 14 '17 at 06:32
Let’s try the third one, $$ \begin{aligned} I_3 & =\int_0^{\frac{\pi}{2}} \frac{x^3}{\sin ^3 x} d x\\&=-\int_0^{\frac{\pi}{2}} \frac{x^3}{\sin x} d(\cot x) \\ & =-\left[\frac{x^3}{\sin x} \cot x\right]_0^{\frac{\pi}{2}}+\int_0^{\frac{\pi}{2}} \frac{3 x^2 \sin x-x^3 \cos x}{\sin ^2 x} \cot x d x \\ & =\int_0^{\frac{\pi}{2}}\left(3 x^2 \cot x \csc x-\frac{x^3 \cos ^2 x}{\sin ^3 x}\right) d x \\ & =3 \int_0^{\frac{\pi}{2}} x^2 d(-\csc x)-\int_0^{\frac{\pi}{2}} \frac{x^3\left(1-\sin ^2 x\right)}{\sin ^3 x} d x \\ & =3\left[-x^2 \csc x\right]_0^{\frac{\pi}{2}} +6 I_1-I_3+\int_0^{\frac{\pi}{2}} \frac{x^3}{\sin x} d x \end{aligned} $$
Rearranging gives$$ I_3=-\frac{3 \pi^2}{8}+6G+ \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x^3}{\sin x} d x $$ For the last integral, we need Euler’s identity $e^{xi}=\cos x+i\sin x$ to transform it into $$ \begin{aligned} \int_0^{\frac{\pi}{2}} \frac{x^3}{\sin x} d x&=2 i \int_0^{\frac{\pi}{2}} \frac{x^3}{e^{x i}-e^{-x i}} d x \\ = & 2 i \int_0^{\frac{\pi}{2}} \frac{x^3 e^{-x i}}{1-e^{-2 x i}} d x \\ = & 2 i \sum_{n=0}^{\infty} \int_0^{\frac{\pi}{2}} x^3 e^{-(2 n+1) x i} d x \end{aligned} $$ Integrating by parts thrice on the last integral yields $$ \begin{aligned}&\int_0^{\frac{\pi}{2}} x^3 e^{-(2 n+1) x i} d x \\ =&\frac{(-1)^n}{8(2 n+1)^4}[\pi(2 n+1)\left[-24+\pi(2 n+1)(2 \pi n+\pi-6 i)]+48(-1)^n+48 i \right]\end{aligned} $$
Plugging back gives $$ \begin{aligned} \int_0^{\frac{\pi}{2}} \frac{x^3}{\sin x} d x & =\frac{3 \pi^2}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2 n+1)^2}-12 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2 n+1)^4} \\ & =\frac{3 \pi^2}{2} G-12\beta(4)\\ \end{aligned}$$
where $G$ is the Catalan’s constant and $\beta(.)$ is the Dirichlet_beta_function.
Hence we may conclude that $$ \boxed{I_3=-\frac{3 \pi^2}{8}+\frac{3\left(8+\pi^2\right) G}{4}-\beta(4)}$$
- 20,421
In general, we can deal with the integral
$$ I(m,n)=\int_0^{\frac{\pi}{2}} \frac{x^m}{\sin^n x} d x $$ by establishing a reduction formula via integration by parts.
$$ \begin{aligned} I(m, n)=&\int_0^{\frac{\pi}{2}} \frac{x^m}{\sin ^n x} d x -\int_0^{\frac{\pi}{2}} x^m \csc ^{n-2} x d(\cot x)\\=& m \int_0^\pi \frac{x^{m-1} \cos x}{\sin ^{n-1} x} d x-(n-2) \int_0^\pi x^m \csc ^{n-2} x\left(\csc ^2 x-1\right) d x\\=& -\frac{m}{n-2} \int_0^{\frac{\pi}{2}} x^{m-1} d\left(\frac{1}{\sin ^{n-2} x}\right)-(n-2) I(m, n)+(n-2) I(m, n-2) \end{aligned} $$
Rearranging and simplifying yields
$$ \boxed{I(m, n)=-\frac{m \pi^{m-1}}{(n-1)(n-2) 2^{m-1}}+\frac{m(m-1)}{(n-1)(n-2)} I(m-2, n-2)+ \frac{n-2}{n-1} I(m, n-2)} $$ where $m\ge n\ge 3$. Applying the formula repeatedly, we can find $I(m,n) $ with two initial integrals.
For odd integer $n$, we need to evaluate
$$\int_0^{\frac{\pi}{2}} \frac{x^m}{\sin x} d x $$ which was already solved in the post which states that \begin{align} \int_0^{\frac{\pi}{2}} \frac{x^m}{\sin x} d x =\>(2-2^{-m})m!\zeta(m+1)\Re(i^m) - \sum_{k=1}^{[\frac{m+1}2]} (\frac{\pi}2)^{m+1-2k}\>\frac{2(-1)^k m!}{(m+1-2k)!} \>\beta(2k) \end{align} For example, $$ \begin{aligned}I(1,1)&= -\left(\frac{\pi}{2}\right)^0 2(-1) \beta(2) = 2 G \\I(3,1)&=-\left(\frac{\pi^2}{4} \cdot \frac{-12}{2} \beta(2)+12 \beta(4)\right) =\frac{3 \pi^2}{2} G-12 \beta(4) \\I(5,1)&=\frac{5 \pi^4}{8} G-30 \pi^2 \beta(4)+240 \beta(6)\end{aligned} $$ Coming back to our integral, $$ I(3,3)=-\frac{3 \pi^2}{8}+3 I(1,1)+\frac{1}{2} I(3,1)= -\frac{3 \pi^2}{8}+\frac{3\left(8+\pi^2\right) }{4}G-6\beta(4) $$ $$ \begin{aligned}I(5,3)&=-\frac{5 \pi^4}{8}+10 I(3,1)+I(5,1)\\&= \frac{5 \pi^4}{32}+\left(15 \pi^2+\frac{5 \pi^4}{16}\right) G-\left(120+15 \pi^2\right) \beta(4) +120 \beta(6)\end{aligned} $$
$$ \begin{aligned} I(5,5)& = -\frac{5 \pi^4}{192}+\frac{5}{3} I(3,3)+\frac{3}{4} I(5,3)\\&=-\frac{5 \pi^4}{192}+\frac{5}{3}\left(-\frac{3 \pi^2}{8}+\frac{3\left(8+\pi^4\right)}{4} G-6 \beta(4)\right)\\ \quad &+\frac{3}{4}\left[ \frac{5 \pi^4}{32}+\left(15 \pi^2+\frac{5 \pi^4}{16}\right) G-\left(120+15 \pi^2\right) \beta(4) +120 \beta(6) \right]\\&= - \frac{5 \pi^2}{8}-\frac{35 \pi^4}{384}+\left(10+\frac{45 \pi^2}{4}+\frac{35 \pi^4}{64}\right) G -\left(100+ \frac{45\pi^2}{4}\right) \beta(4)+90 \beta(6) \end{aligned} $$
For even integers $n$, we need to evaluate $$\int_0^{\frac{\pi}{2}} \frac{x^m}{\sin^2 x} d x , $$ which is difficult to tackle.
- 20,421