Consider two binary matrices with obvious patterns: $$ C= \begin{bmatrix} 1 &0 &0 &0 &0 &0 &0\\ 1 &0 &0 &0 &0 &0 &0\\ 0 &1 &0 &0 &0 &0 &0\\ 0 &1 &0 &0 &0 &0 &0\\ 0 &0 &1 &0 &0 &0 &0\\ 0 &0 &1 &0 &0 &0 &0\\ 0 &0 &0 &1 &0 &0 &0 \end{bmatrix} $$ and $$ T= \begin{bmatrix} 1 &1 &0 &0 &0 &0 &0\\ 0 &1 &1 &0 &0 &0 &0\\ 0 &0 &1 &1 &0 &0 &0\\ 0 &0 &0 &1 &1 &0 &0\\ 0 &0 &0 &0 &1 &1 &0\\ 0 &0 &0 &0 &0 &1 &1\\ 0 &0 &0 &0 &0 &0 &1 \end{bmatrix} $$
The eigenvalues of the matrices $T^n C,n=0,1,2,3$ are zeros and consecutive powers of $2$ equal to $0,1,2,4$. I'd like to have a proof of the generalization of this fact for matrices of larger size with the same patterns.
Note, the entries of $T^n C$ in the left upper corner are zeros and binomial coefficients for the power $n+1$.
A motivation for this question is in Binary eigenvalues matrices and continued fractions