I'm trying to calculate the expression: $$\frac{1}{\sin\frac{\pi}{15}}+\frac{1}{\sin\frac{2\pi}{15}}-\frac{1}{\sin\frac{4\pi}{15}}+\frac{1}{\sin\frac{8\pi}{15}}$$ and show that it is equal $4\sqrt{3}$.
I was trying to group the summands and calculate sums of $$\frac{1}{\sin\frac{\pi}{15}}+\frac{1}{\sin\frac{2\pi}{15}} \hspace{0.5cm}\text{and} \hspace{0.5cm} -\frac{1}{\sin\frac{4\pi}{15}}+\frac{1}{\sin\frac{8\pi}{15}}$$ where we get $$\frac{2\cos\frac{2\pi}{15}+1}{\sin\frac{2\pi}{15}}-\frac{2\cos\frac{4\pi}{15}-1}{\sin\frac{8\pi}{15}}$$ but unfortunately this sum is not simplified.
How to prove this equality?