$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{N \in \mathbb{N}_{\geq 1}}$:
\begin{align}
&\bbox[#ffd,10px]{\sum_{n = 1}^{N}\bracks{n\ln\pars{2n + 1 \over 2n - 1} - 1}}
\\[5mm] = &\
\sum_{n = 1}^{N}n\ln\pars{2n + 1} - \sum_{n = 1}^{N}n\ln\pars{2n - 1} - N
\\[5mm] = &\
-N + \sum_{n = 0}^{N}n\ln\pars{2n + 1} -
\sum_{n = 0}^{N - 1}\pars{n + 1}\ln\pars{2n + 1}
\\[5mm] = &\
-N + N\ln\pars{2N + 1} -N\ln\pars{2} -
\sum_{n = 0}^{N - 1}\ln\pars{n + {1 \over 2}}
\\[5mm] = &\
-N + N\ln\pars{N + {1 \over 2}} -
\ln\pars{\prod_{n = 0}^{N - 1}\bracks{n + {1 \over 2}}}
\\[5mm] = &\
-N + N\ln\pars{N + {1 \over 2}} -
\ln\pars{\bracks{N - 1/2}! \over \Gamma\pars{1/2}}
\\[5mm] \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim}&\
-N + N\ln\pars{N + {1 \over 2}} -
\ln\pars{\root{2\pi}\bracks{N - 1/2}^{N}\expo{-N + 1/2} \over \root{\pi}}
\\[5mm] = &\
-N + N\ln\pars{N + {1 \over 2}} -
\ln\pars{2^{1/2}N^{N}\bracks{1 - {1/2 \over N}}^{N}
\expo{-N + 1/2}}
\\[5mm] \stackrel{\mrm{as}\ N\ \to\ \infty}{\sim} &\
-N + N\ln\pars{N + {1 \over 2}} -
\bracks{{1 \over 2}\,\ln\pars{2} + N\ln\pars{N} - N}
\\[5mm] = &\
\underbrace{N\ln\pars{1 + {1 \over 2N}}}
_{\ds{\stackrel{\mrm{as}\ N\ \to\ \infty}{\to}\ {1 \over 2}}}\
-\ {1 \over 2}\,\ln\pars{2}\label{1}\tag{1}
\\[5mm] \stackrel{\mrm{as}\ N\ \to\ \infty}{\to} &\
\bbx{1 - \ln\pars{2} \over 2} \approx 0.1534
\end{align}