I got this sum from a site, but I can't remember it.
$$\sum_{j=1}^{\infty}\frac{1}{2j+1}\sum_{i=1}^{\infty}(-1)^i[H_{i,2j}-\zeta(2j)]=\frac{1-\ln(2)}{2}$$
This looking interesting, but is this sum correct?
Let $$A=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\frac{(-1)^iH_{i,2j}}{2j+1}$$
$$B=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\frac{(-1)^i\zeta(2j)}{2j+1}$$
The sum $A$ and $B$ takes the form $$\sum_{k=0}^{\infty}\frac{(-1)^k F(k)}{2k+1}$$ As for sum $B$ for $F(k)=1$ it resembles $$\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}=\frac{\pi}{4}$$