As an extension of a question I posed earlier, I thought it would be best to try and final the result for a more general form:
\begin{equation} I_n = \int_{0}^{\infty} \frac{e^{-x^n}}{x^n + 1}\:dx \end{equation} with $n \in \mathbb{R}, n > 1$
As with the previous question, I'm interested in finding alternative ways of solving this that does not rely on complex analysis.
My Method: I employ the exact same method as with my earlier question. Here first let
\begin{equation} J_n(t) = \int_{0}^{\infty} \frac{e^{-tx^n}}{x^n + 1}\:dx \end{equation}
We see that $I_n = J_n(1)$ and that $J_n(0) = \frac{1}{n}\Gamma\left(1 - \frac{1}{n}\right)\Gamma\left(\frac{1}{n}\right)$ (This is shown here)
Now, take the derivative with respect to '$t$' to achieve \begin{align} J_n'(t) &= \int_{0}^{\infty} \frac{-x^ne^{-tx^n}}{x^n + 1}\:dx = -\int_{0}^{\infty} \frac{\left(x^n + 1 - 1\right)e^{-tx^n}}{x^n + 1}\:dx \\ &= -\left[\int_{0}^{\infty}e^{-tx^n}\:dx - \int_{0}^{\infty}\frac{e^{-tx^n}}{x^n + 1}\:dx \right] \\ &= -\left[ \frac{t^{-\frac{1}{n}}}{n}\Gamma\left(\frac{1}{n}\right) -J_n(t)\right] \end{align}
Which yields the differential equation:
\begin{equation} J_n'(t) - J_n(t) = -\frac{t^{-\frac{1}{n}}}{n}\Gamma\left(\frac{1}{n}\right) \end{equation}
Which yields the solution:
\begin{equation} J_n(t) = \frac{1}{n}\Gamma\left(1 - \frac{1}{n}, t\right)\Gamma\left(\frac{1}{n}\right)e^t \end{equation}
And finally:
\begin{equation} I_n = J_n(1) = \int_{0}^{\infty} \frac{e^{-x^n}}{x^n + 1}\:dx = \frac{e}{n}\Gamma\left(1 - \frac{1}{n}, 1\right)\Gamma\left(\frac{1}{n}\right) \end{equation}
Which for me, is a nice result. Fascinated to see other methods!
Edit - Thanks to spaceisdarkgreen for the pickup on my mistyping of the Incomplete Gamma Function.