I have a feel this will be a duplicate question. I have had a look around and couldn't find it, so please advise if so.
Here I wish to address the definite integral:
\begin{equation} I = \int_{0}^{\infty} \frac{e^{-x^2}}{x^2 + 1}\:dx \end{equation}
I have solved it using Feynman's Trick, however I feel it's limited and am hoping to find other methods to solve. Without using Residues, what are some other approaches to this integral?
My method:
\begin{equation} I(t) = \int_{0}^{\infty} \frac{e^{-tx^2}}{x^2 + 1}\:dx \end{equation}
Here $I = I(1)$ and $I(0) = \frac{\pi}{2}$. Take the derivative under the curve with respect to '$t$' to achieve:
\begin{align} I'(t) &= \int_{0}^{\infty} \frac{-x^2e^{-tx^2}}{x^2 + 1}\:dx = -\int_{0}^{\infty} \frac{x^2e^{-tx^2}}{x^2 + 1}\:dx \\ &= -\left[\int_{0}^{\infty} \frac{\left(x^2 + 1 - 1\right)e^{-tx^2}}{x^2 + 1}\:dx \right] \\ &= -\int_{0}^{\infty} e^{-tx^2}\:dx + \int_{0}^{\infty} \frac{e^{-tx^2}}{x^2 + 1}\:dx \\ &= -\frac{\sqrt{\pi}}{2}\frac{1}{\sqrt{t}} + I(t) \end{align}
And so we arrive at the differential equation:
\begin{equation} I'(t) - I(t) = -\frac{\sqrt{\pi}}{2}\frac{1}{\sqrt{t}} \end{equation}
Which yields the solution:
\begin{equation} I(t) = \frac{\pi}{2}e^t\operatorname{erfc}\left(t\right) \end{equation}
Thus,
\begin{equation} I = I(1) \int_{0}^{\infty} \frac{e^{-x^2}}{x^2 + 1}\:dx = \frac{\pi}{2}e\operatorname{erfc}(1) \end{equation}
Addendum:
Using the exact method I've employed, you can extend the above integral into a more genealised form:
\begin{equation} I = \int_{0}^{\infty} \frac{e^{-kx^2}}{x^2 + 1}\:dx = \frac{\pi}{2}e^k\operatorname{erfc}(\sqrt{k}) \end{equation}
Addendum 2: Whilst we are genealising: \begin{equation} I = \int_{0}^{\infty} \frac{e^{-kx^2}}{ax^2 + b}\:dx = \frac{\pi}{2b}e^\Phi\operatorname{erfc}(\sqrt{\Phi}) \end{equation}
Where $\Phi = \frac{kb}{a}$ and $a,b,k \in \mathbb{R}^{+}$