Let $A$ be a $C^*$-algebra with $a,b,e\in A$ such that $e\geq0$ and $\|e\|\leq1$. If $\|ae-a\|\leq\varepsilon$ and $\|be\|\leq\varepsilon$, then is $\|a+b\|\leq\max\{\|a\|,\|b\|\}+2\varepsilon$?
The reason I believe this is true, is because this holds for all homomorphisms $h$ on $A$. We get $|h(a-ae)|\leq\varepsilon$, $|h(be)|\leq\varepsilon$ and $0\leq h(e)\leq1$. This gives \begin{align} |h(a+b)| &=|h(a-ae)+h(ae)+h(b-be)+h(be)| \\&\leq|h(e)h(a)+(1-h(e))h(b)|+|h(a-ae)|+|h(be)| \\&\leq\max\{|h(a)|,|h(b)|\}+2\varepsilon. \end{align} If I remember correctly, only in abelian $C^*$-algebras we have the equality $\|a\|=\sup h(a)$ where $h$ is any homomorphism. This means that we have solved the question for abelian $C^*$-algebras, but not for others.
I tried to solve this with only norm inequalities, but I only found one in the wrong direction: \begin{align} \|a+b\| &\geq\|a+b\|\|e\| \\&\geq\|ae+be\| \\&\geq\|a\|-\|ae-a\|-\|be\| \\&\geq\|a\|-2\varepsilon. \end{align} I could not even find an inequality of the form $\|a+b\|\geq\|b\|-\phi(\varepsilon)$ where $\phi(\varepsilon)\to0$ as $\varepsilon\to0$.