Let $\mathcal{A}$ be a $C^*$-algebra with $a,b,e\in\mathcal{A}$ such that $e\geq0$ and $\|e\|\leq1$. If $\|ae-a\|\leq\varepsilon$ and $\|be\|\leq\varepsilon$, then is $\|a+b\|\leq\sqrt{\|a\|^2+\|b\|^2}+2\varepsilon$?
This is a follow up on Can we bound $\|a+b\|$ if $\|ae-a\|$ and $\|be\|$ are small, in a $C^*$-algebra? where we showed an even stronger result holds if $A$ is abelian. Here is what I have so far.
Assume $\mathcal{A}=\mathcal{B}(\mathcal{H})$ for some Hilbert space $\mathcal{H}$. For convenience, we denote $A=a$, $B=b$, $E=e$ and $I=\mbox{id}$. For all $h\in\mathcal{H}$ with $\|h\|\leq1$ we have \begin{align} \|(A+B)h\| &=\|(A-AE)h+AEh+(B-BE)h+BEh\| \\&\leq\|A\|\|Eh\|+\|B\|\|(I-E)h\|+\|A-AE\|\|h\|+\|BE\|\|h\| \end{align} Here we have $\|A-AE\|\|h\|+\|BE\|\|h\|\leq2\varepsilon$, so we only need to show that $\|A\|\|Eh\|+\|B\|\|(I-E)h\|\leq\sqrt{\|A\|^2+\|B\|^2}$. Let us denote $h_1=Eh$ and $h_2=(I-E)h$. Note $h_1+h_2=h$.
(*) I believe that you should be able to use $E\geq0$ and $\|E\|\leq1$ to show that $\langle h_1,h_2\rangle\geq0$. With this, we get $$\|h_1\|^2+\|h_2\|^2\leq\langle h_1,h_1\rangle+\langle h_1,h_2\rangle+\langle h_2,h_1\rangle+\langle h_2,h_2\rangle=\langle h,h\rangle\leq1.$$ By Cauchy Schwartz, we then get $$\|A\|\|h_1\|+\|B\|\|h_2\|=\langle(\|A\|,\|B\|),(\|h_1\|,\|h_2\|)\rangle\leq\sqrt{\|A\|^2+\|B\|^2}.$$
Apart from a detail that I hope is fixable (*), this solves the problem for operator spaces on Hilbert spaces. Since an even stronger result turns out to be true for abelian $C^*$-algebras, basically every naturally occuring $C^*$-algebras has been handled. However, I would like to be able to generalize this proof to all $C^*$-algebras. I have the idea that the Gelfand-Naimark-Segal construction might be useful to reduce the general case to the $\mathcal{B}(\mathcal{H})$ case. However, I have never done anything with this theorem before, so I'm not very confident with my skills in applying it.
In summary: Please help me fix the detail (*) and generalize the proof. Or give a counterexample.