I am given two bases of a vector space consisting of matrices.
e basis:
e1=`\begin{bmatrix}1&2\\0&5\end{bmatrix} e2=\begin{bmatrix}1&1\\-1&0\end{bmatrix} e3= \begin{bmatrix}1&0\\2&3\end{bmatrix} e4=\begin{bmatrix}1&2\\4&3\end{bmatrix}
The second basis is the e^ basis:
e^1=\begin{bmatrix}-2&2\\-3&3\end{bmatrix} e^2=\begin{bmatrix}0&1\\2&3\end{bmatrix} e^3=\begin{bmatrix}1&1\\-1&0\end{bmatrix} e^4=\begin{bmatrix}-1&2\\5&2\end{bmatrix} Compute the transition matrix P from e to e^.
I know I have to write each e of the original basis as a linear combination of the e^ matrices, but how do I actually compute that?