2

Is there any formula for $ \arctan x + \arctan y + \arctan z $ ?

One way to solve such type of question is to is two take two at a time and solve them.

I know the general formula for $ \arctan x + \arctan y + \arctan z = $

$ \arctan \frac{ x + y+ z - xyz }{1-xy-xz-zy} $. But what about other cases.

These cases exist in these formulas.

$ \arctan x + \arctan y = $

Case 1

If $ xy \lt 1 $

$ = \arctan\frac{ x + y }{1-xy} $

Case 2

If $ xy \gt 1 $ and $ x,y \gt 0 $

$ = \pi + \arctan\frac{ x + y }{1-xy} $

Case 3

If $ xy \gt 1$ and $ x,y \lt 0 $

$ = - \pi + \arctan\frac{ x + y }{1-xy} $

Valent
  • 3,228
  • 1
  • 15
  • 28
user541396
  • 1,028
  • 8
  • 25

0 Answers0