Note that
$$
\begin{align}
&\log\left(\frac{x^{\sin(x)^x}}x\right)\\[3pt]
&=\log(x)\sin(x)^x-\log(x)\\[6pt]
&=\color{#C00}{\log(x)}\,\color{#090}{x^x}\color{#00F}{\left(\frac{\sin(x)}x\right)^x}-\log(x)\\
&=\color{#C00}{\log(x)}\color{#090}{\left(1+x\log(x)+\frac{x^2\log(x)^2}2+\varepsilon_{3,3}\right)}\color{#00F}{\left(1+\varepsilon_{3,0}\right)}-\log(x)\\
&=x\log(x)^2+\frac{x^2\log(x)^3}2+\varepsilon_{3,4}
\end{align}
$$
and
$$
\begin{align}
&\log\left(\frac{\sin(x)^{x^{\sin(x)}}}x\right)\\[3pt]
&=\log(\sin(x))\,x^{\sin(x)}-\log(x)\\[9pt]
&=\color{#C00}{\log(\sin(x))}\,\color{#090}{x^x}\color{#00F}{x^{\sin(x)-x}}-\log(x)\\[3pt]
&=\color{#C00}{\left(\log(x)-\frac{x^2}6+\varepsilon_{4,0}\right)}\color{#090}{\left(1+x\log(x)+\frac{x^2\log(x)^2}2+\varepsilon_{3,3}\right)}\color{#00F}{\left(1+\varepsilon_{3,1}\right)}-\log(x)\\
&=x\log(x)^2+\frac{x^2\log(x)^3}2-\frac{x^2}6+\varepsilon_{3,4}
\end{align}
$$
where $\varepsilon_{m,n}=O\!\left(x^m\log(x)^n\right)$.
If $u,v\to0$, then $e^u-e^v=(u-v)\left(1+\frac{u+v}2\right)+O\!\left(u^3\right)+O\!\left(v^3\right)$. Thus,
$$
\frac{x^{\sin(x)^x}}x-\frac{\sin(x)^{x^{\sin(x)}}}x=\frac{x^2}6+\varepsilon_{3,6}
$$
and therefore,
$$
\frac{x^{\sin(x)^x}-\sin(x)^{x^{\sin(x)}}}{x^3}=\frac16+\varepsilon_{1,6}
$$
That is,
$$
\bbox[5px,border:2px solid #C0A000]{\lim_{x\to0}\frac{x^{\sin(x)^x}-\sin(x)^{x^{\sin(x)}}}{x^3}=\frac16}
$$
In General
Note that
$$
\begin{align}
\left(x+O\!\left(x^3\right)\right)^{x+O\left(x^3\right)}
&=\color{#C00}{x^x}\color{#090}{x^{O\left(x^3\right)}}\color{#00F}{\left(1+O\!\left(x^2\right)\right)^{x+O\left(x^3\right)}}\\[3pt]
&=\color{#C00}{\left(1+x\log(x)+\tfrac12x^2\log(x)^2+\varepsilon_{3,3}\right)}\color{#090}{(1+\varepsilon_{3,1})}\color{#00F}{(1+\varepsilon_{3,0})}\\[3pt]
&=1+x\log(x)+\tfrac12x^2\log(x)^2+\varepsilon_{3,3}\tag1
\end{align}
$$
where $\varepsilon_{m,n}=O\!\left(x^m\log(x)^n\right)$.
Furthermore,
$$
\begin{align}
\log\left(x+ax^3+o\!\left(x^3\right)\right)
&=\log(x)+\log\left(1+ax^2+o\!\left(x^2\right)\right)\\[3pt]
&=\log(x)+ax^2+o\!\left(x^2\right)\tag2
\end{align}
$$
Therefore,
$$
\begin{align}
&\log\left(x+ax^3+o\!\left(x^3\right)\right)\left(x+O\!\left(x^3\right)\right)^{x+O\left(x^3\right)}-\log(x)\\[3pt]
&=x\log(x)^2+\tfrac12x^2\log(x)^3+ax^2+o\!\left(x^2\right)\tag3
\end{align}
$$
If $u,v\to0$, then $e^u-e^v=(u-v)\left(1+\frac{u+v}2\right)+O\!\left(u^3\right)+O\!\left(v^3\right)$.
Thus,
$$
\begin{align}
&\frac1x\left[\left(x+a_1x^3+o\!\left(x^3\right)\right)^{\left(x+O\left(x^3\right)\right)^{x+O\left(\lower{.5pt}{x^3}\right)}}
-\left(x+a_2x^3+o\!\left(x^3\right)\right)^{\left(x+O\left(x^3\right)\right)^{x+O\left(\lower{.5pt}{x^3}\right)}}\right]\\[6pt]
&=(a_1-a_2)x^2+o\!\left(x^2\right)\tag4
\end{align}
$$
Therefore,
$$
\bbox[5px,border:2px solid #C0A000]{\begin{align}
&\lim_{x\to0}\frac1{x^3}\left[\left(x+a_1x^3+o\!\left(x^3\right)\right)^{\left(x+O\left(x^3\right)\right)^{x+O\left(\lower{.5pt}{x^3}\right)}}
-\left(x+a_2x^3+o\!\left(x^3\right)\right)^{\left(x+O\left(x^3\right)\right)^{x+O\left(\lower{.5pt}{x^3}\right)}}\right]\\[6pt]
&=a_1-a_2
\end{align}}\tag5
$$
and this verifies the other limits in the similar question (which wanted an answer without Taylor series).