How do you prove: $$ \lim_{n\to\infty}\frac{(2n-1)!!}{(2n)!!}=0 $$ where $(2n)!!=2n(2n-2)(2n-4)\cdots6\cdot 4\cdot2.$
I would do the trick $$2n=\frac{(2n-1)+(2n+1)}{2}\ge\sqrt{2n-1}\cdot\sqrt{2n+1}.$$ Therefore we have:
$$ 0\le\frac{(2n-1)!!}{(2n)!!}\le\frac{(2n-1)\cdot(2n-3)\cdots}{\sqrt{2n+1}\cdot\sqrt{2n-1}\cdot\sqrt{2n-1}\cdot\sqrt{2n-3}\cdots}=\frac{1}{\sqrt{2n+1}}\xrightarrow{n\to\infty} 0 .$$
But I think this is somewhat tricky. What are other ways to prove this limit? Thanks.