Given that two formal power series have coefficients in $\ell^p$,
$$a(x)=\sum_{n=0}^\infty a_nx^n,\quad\sum_{n=0}^\infty|a_n|^p<\infty$$
$$b(x)=\sum_{n=0}^\infty b_nx^n,\quad\sum_{n=0}^\infty|b_n|^p<\infty,$$
does it follow that their product $a(x)b(x)$ also has coefficients in $\ell^p$?
I'm particularly interested in the case $p=2$ (Hilbert space).
I've found that the multiplication operator is unbounded with respect to the $\ell^2$ norm; consider the polynomials
$$p_n(x)=\frac{1-x^n}{1-x}=1+x+x^2+\cdots+x^{n-1}.$$
$$\lVert p_n\rVert_2^2=n$$
$$p_n(x)^2=1+2x+3x^2+\cdots+(n-1)x^{n-2}+nx^{n-1}+(n-1)x^n+\cdots+2x^{2n-3}+x^{2n-2}$$
$$\lVert p_n\!^2\rVert_2^2=2(1^2+2^2+3^2+\cdots+n^2)-n^2$$
$$=2\frac{n(n+1)(2n+1)}{6}-\frac{n(3n)}{3}$$
$$=\frac{n(2n^2+1)}{3}$$
So for all $n$,
$$\sup_{a,b}\frac{\lVert ab\rVert_2}{\lVert a\rVert_2\lVert b\rVert_2}\geq\sup_a\frac{\lVert a^2\rVert_2}{\lVert a\rVert_2^2}\geq\frac{\lVert p_n\!^2\rVert_2}{\lVert p_n\rVert_2^2}=\sqrt\frac{2n^2+1}{3n}$$
and thus $$\sup_{a,b}\frac{\lVert ab\rVert_2}{\lVert a\rVert_2\lVert b\rVert_2}=\infty.$$
But is this supremum actually a maximum? Is there any case where $\lVert a\rVert_2$ and $\lVert b\rVert_2$ are finite, but $\lVert ab\rVert_2$ is infinite?