\begin{align}J&=\int_0^1 \frac{\ln x\ln(1+x)}{1-x}\,dx\end{align}
Always the same story...
For $x\in [0;1]$ define the function $R$ by,\begin{align}R(x)&=\int_0^x \frac{\ln t}{1-t}\,dt\\
&=\int_0^1 \frac{x\ln(tx)}{1-tx}\,dt\\
J&=\Big[R(x)\ln(1+x)\Big]_0^1-\int_0^1 \frac{R(x)}{(1+x)} dx\\
&=-\zeta(2)\ln 2-\int_0^1 \int_0^1 \frac{x\ln(tx)}{(1-tx)(1+x)}\,dt\,dx\\
&=-\zeta(2)\ln 2-\int_0^1 \left(\int_0^1 \frac{x\ln t}{(1-tx)(1+x)}\,dx\right)\,dt-\int_0^1 \left(\int_0^1 \frac{x\ln x}{(1-tx)(1+x)}\,dt\right)\,dx\\
&=-\zeta(2)\ln 2+\int_0^1\left[\frac{\ln(1-tx)}{t(1+t)}+\frac{\ln(1+x)}{1+t}\right]_{x=0}^{x=1}\ln t\,dt+\int_0^1\left[\frac{\ln(1-tx)}{1+x}\right]_{t=0}^{t=1}\ln x\,dx\\
&=-\zeta(2)\ln 2+\int_0^1 \frac{\ln(1-t)\ln t}{t(1+t)}\,dt+\ln 2\int_0^1 \frac{\ln t}{1+t}\,dt+\int_0^1 \frac{\ln(1-x)\ln x}{1+x}\,dx\\
&=-\zeta(2)\ln 2+\int_0^1 \frac{\ln(1-t)\ln t}{t}\,dt+\ln 2\int_0^1 \frac{\ln t}{1+t}\,dt\\
&=-\zeta(2)\ln 2+\frac{1}{2}\left(\Big[\ln^2 x\ln(1-x)\Big]+\int_0^1 \frac{\ln^2 t }{1-t}\,dt\right)+\ln 2\left(\int_0^1 \frac{\ln t}{1-t}\,dt-\int_0^1 \frac{2t\ln t}{1-t^2}\,dt\right)
\end{align}
In the last integral perform the change of variable $y=t^2$,
\begin{align}J&=-\zeta(2)\ln 2+\frac{1}{2}\int_0^1 \frac{\ln^2 t}{1-t}\,dt+\ln 2\left(\int_0^1 \frac{\ln t}{1-t}\,dt-\frac{1}{2}\int_0^1 \frac{\ln t}{1-t}\,dt\right)\\
&=-\frac{3}{2}\zeta(2)\ln 2+\frac{1}{2}\times 2\zeta(3)\\
&=\boxed{-\frac{3}{2}\zeta(2)\ln 2+\zeta(3)}
\end{align}
NB: i assume,\begin{align}R(1)&=\int_0^1 \frac{\ln t}{1-t}\,dt\\
&=-\zeta(2)\\
\int_0^1 \frac{\ln^2 t}{1-t}\,dt&=2\zeta(3)\end{align}