$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\sum_{n = 1}^{\infty}{4^{n}H_{n} \over
n^{2}{2n \choose n}}} =
\int_{0}^{4}\sum_{n = 1}^{\infty}{H_{n} \over n{2n \choose n}}
\,x^{n - 1}\,\dd x
\\[5mm] = &\
\int_{0}^{4}\sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\,{\Gamma\pars{n}
\Gamma\pars{n + 1} \over \Gamma\pars{2n + 1}}\,\dd x
\\[5mm] = &\
\int_{0}^{4}\sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\int_{0}^{1}t^{n - 1}
\pars{1 - t}^{n}\,\dd t\,\dd x
\\[5mm] = &\
\int_{0}^{4}\int_{0}^{1}\sum_{n = 1}^{\infty}H_{n}
\bracks{xt\pars{1 - t}}^{\, n}\,{\dd t\,\dd x \over tx}
\\[5mm] = &\
\int_{0}^{4}\int_{0}^{1}\braces{%
-\,{\ln\pars{1 - xt\bracks{1-t}} \over 1 - xt\pars{1-t}}}
{\dd t\,\dd x \over tx}
\\[5mm] = &\
\int_{0}^{1}{2\ln^{2}\pars{\verts{1 - 2t}} +
\mrm{Li}_{2}\pars{4\bracks{1 - t})\, t}\over t}\,\dd t
\\[5mm] = &\
2\int_{-1/2}^{1/2}{2\ln^{2}\pars{\verts{2t}} +
\mrm{Li}_{2}\pars{1 - 4t^{2}}\over 1 + 2t}\,\dd t
\\[5mm] = &\
4\int_{0}^{1/2}{2\ln^{2}\pars{2t} +
\mrm{Li}_{2}\pars{1 - 4t^{2}} \over 1 - 4t^{2}}\,\dd t
\\[5mm] = &\
2\int_{0}^{1}{2\ln^{2}\pars{t} +
\mrm{Li}_{2}\pars{1 - t^{2}} \over 1 - t^{2}}\,\dd t
\\[5mm] = &\
4\
\underbrace{\int_{0}^{1}{\ln^{2}\pars{t} \over 1 - t^{2}}\,\dd t}
_{\ds{\color{red}{\LARGE\S}:\ {7 \over 4}\,\zeta\pars{3}}}\ +\
2\,
\underbrace{\int_{0}^{1}{\mrm{Li}_{2}\pars{1 - t^{2}} \over
1 - t^{2}}\,\dd t}_{\ds{\color{red}{\LARGE *}:\ {1 \over 2}\,\pi^{2}\ln\pars{2} -
{7 \over 4}\,\zeta\pars{3}}}
\\[5mm] = &\
\bbx{6\ln\pars{2}\,\zeta\pars{2} + {7 \over 2}\,\zeta\pars{3}} \\ &
\end{align}
$\left\{\begin{array}{lcl}
\ds{\color{red}{\LARGE\S}} & \ds{:} &
\mbox{First} "Partial\ Fraction\ Split.\ \mbox{Next, integrate}\ twice\ \mbox{by parts.}
\\[2mm]
\ds{\color{red}{\LARGE *}} & \ds{:} & \mbox{After integration by parts, the final expression seems to be a doable and}
\\ && \mbox{known integral.}
\end{array}\right.$