I need help with the following problem - a hint of how to approach it would be fine:
Given $a$, $b$, and $c$ are real numbers and $a+b+c=abc$, find $$\tan^{-1}(a)+\tan^{-1}(b)+\tan^{-1}(c).$$
I need help with the following problem - a hint of how to approach it would be fine:
Given $a$, $b$, and $c$ are real numbers and $a+b+c=abc$, find $$\tan^{-1}(a)+\tan^{-1}(b)+\tan^{-1}(c).$$
By the trigonometric identity $$ \tan(\alpha+\beta+\gamma) = \frac{\tan\alpha+\tan\beta+\tan\gamma-\tan\alpha\tan\beta\tan\gamma}{1-\tan\alpha\tan\beta-\tan\alpha\tan\gamma-\tan\beta\tan\gamma}. $$ let $\alpha$, $\beta$, $\gamma$ be respectively the arctangents of $a$, $b$, and $c$ so that $$ \frac{a+b+c-abc}{1-ab-ac-bc} = \tan\Big(\arctan(a)+\arctan(b)+\arctan(c)\Big) $$ then since $a+b+c=abc$ we have that the numerator of the above equation is zero $$\tan\Big(\arctan(a)+\arctan(b)+\arctan(c)\Big)=0$$ from which we know the tangent function is zero at integer multiples of $\pi$. However, we shouldn't accept all integer values of $\pi$ since $\arctan(\theta):\mathbb R \to (-\frac{\pi}{2},\frac{\pi}{2})$ and therefore the range of $\arctan(\theta)$ is restricted to $(-\frac{\pi}{2},\frac{\pi}{2})$. Following the technique shown inside this question, we may conclude
$$\arctan(a)+\arctan(b)+\arctan(c) = \begin{cases} \pi, & 1 < ab+bc+ca ~~\text{and}~~ a+b+c > 0\\ 0, & 1 > ab+bc+ca\\ -\pi & 1 < ab+bc+ca ~~\text{and}~~ a+b+c < 0 \end{cases} $$
Let $\tan^{-1}a=A,a=\tan A$ etc.
For nonzero finite $a,b,c$
Observe that $-\pi/2<A,B,C<\pi/2\implies?<A+B+C<?$
$-c=(a+b)(1-ab)$
$\tan(A+B)=-\tan C=\tan(-C)$
$A+B=n\pi+(-C)$ where $n$ is any integer
Let a=tanA , b= tanB and c= tanC $\\$ Since tanA + tan B + tan C = tanA.tanB.tanC $\\$ Therefore. A+B+C= nπ , for n to be any integrr. And for inverse to define $tan^{-1}x$ lie in interval (-π/2,π/2) $\\$ Hence A+B+C = -π or π
If $A+B+C=n\pi, n \in I ,$ then $$\tan A+ \tan B + \tan C= \tan A \tan B \tan C$$ So if $\tan A=a, \tan B=b, \tan C=c$, then $$\tan^{-1} a+\tan^{-1}b.+\tan^{-1} c= n \pi, n\in I.$$
Proof: Let $$A+B+C=n \pi \Rightarrow A+B =n \pi -C \Rightarrow \tan(A+B)=\tan (n \pi-C) \Rightarrow \frac{\tan A + \tan B}{1-\tan A \tan B}=-\tan C \Rightarrow \tan A + \tan B+ \tan c= \tan A \tan B \tan C.$$
Interestingly, when a=1, b=2, c=3, then $\tan^{-1} 1+ \tan^{-1} 2 + \tan^{-1} 3= \pi$ is well known.