I'm trying to calculate the "coordinate ring'' of the algebraic $n$-torus $(\mathbb C^n)^\ast$:
If $X:=\mathbb C^n$ and $U:=(\mathbb C^n)^\ast$, we have that $X$ is an irreducible affine algebraic set ad $U$ is an open subset (with the Zariski topology). By definition we have that the ring of regular functions on $U$ is:
$$\mathcal O_X(U)=\bigcap_{x\in U}\Gamma(X)_{\mathfrak m_x}$$
where $\Gamma(X)=\mathbb C[T_1,\ldots,T_n]$ is the coordinate ring of $X$ and $\mathfrak m_x=\{f\in\Gamma(X)\,:\, f(x)=0\}$. But clearly $$U=X\setminus V(T_1,\ldots,T_n)= D(T_1)\cup\ldots\cup D(T_n) $$
so $$\mathcal O_X(U)=\mathcal O_X(D(T_1))\cap\ldots\cap\mathcal O(D(T_n))$$
and by the fact that $\mathcal O_X(D(f))=\Gamma(X)_f$ we can conclude finally that:
$$\mathcal O_X(U)=\mathbb C[T_1,\ldots, T_n]_{T_1}\cap\ldots\cap\mathbb C[T_1,\ldots, T_n]_{T_n}$$
Now I have two questions.
- (technical question). How can I describe formally the ring $\mathbb C[T_1,\ldots, T_n]_{T_1}\cap\ldots\cap\mathbb C[T_1,\ldots, T_n]_{T_n}$? Why it should be $\mathbb C[T_1^{\pm 1},\ldots, T_n^{\pm 1}]$?
- With the coordinate ring of an algebraic affine set $X$ in $\mathbb C^n$, I intend the ring $\mathbb C[T_1,\ldots,T_n]/I(X)$; in this case $U$ is not an affine variety but is a prevariety (finite union of affine variety), so what is the meaning of saying "the coordinate ring of $U$"? If $X$ is an affine variety then $\mathcal O_X(X)=\Gamma(X)$, so the global sections of the structural sheaf are the elements of the coordinate ring, why in this case $\mathcal O_X(U)$ should be the coordinate ring of $U$?