Find the value of $\int_{-\infty}^{\infty} \frac{e^{-x^2}}{1+x^2} dx$
My attempt
First, I know the existence of this integral since $$ \mid \int_{-a}^{a} \frac{e^{-x^2}}{1+x^2} dx \mid \;\; \leq\;\; \mid \int_{-a}^{a} \frac{1}{1+x^2} dx \mid$$
Next, let $R >0 $ be an arbitrary and $\gamma_1(t) = -R(1-t) + Rt , \;\; 0 \leq t \leq1$ and $\gamma_2(t)= Re^{i\pi (t-1)}, \;\; 1 \leq t \leq 2 $.
So, take $f(z) = \frac{e^{-z^2}}{1+z^2}$.
I tried to find the value or upper bound of norm of $$\int_{\gamma_2} \frac{e^{-z^2}}{1+z^2} dz$$.
However, $$ \lvert\int_{\gamma_2} \frac{e^{-z^2}}{1+z^2} dz\rvert \leq \frac{\text{max}\lvert e^{-z^2}\rvert}{R^2-1}\pi R = \frac{e^{R^2}}{R^2-1}\pi R $$ So, I can't proceed this.
May I ask you how to solve this?
$$\langle \mathcal{F}f,\mathcal{F}g\rangle = \langle f,g\rangle.$$
Here $f(x) = \exp(-x^2)$ and $g(x) = \frac{1}{1+x^2}$. The Fourier transforms of these are well-known and are, respectively, $\frac{1}{\sqrt{2}}\exp(-x^2/4)$ and $\sqrt{\frac{\pi}{2}}e^{-|x|}$. You can then use basic calculus techniques to evaluate the integral
$$\int_{-\infty}^{\infty} e^{-x^2/4} e^{-|x|}.$$
– Cameron Williams Nov 21 '19 at 13:27