I would like to derive how the values of $\tan\dfrac A2,\tan\dfrac B2$ are decided
Method$\#1:$
Like Quanto's method $$\dfrac{a+b}{2c}=\dfrac{\sin A+\sin B}{2\sin C}=\dfrac{2\sin\dfrac{A+B}2\cos\dfrac{A-B}2}{4\sin\dfrac C2\cos\dfrac C2}=\dfrac{\cos\dfrac{A-B}2}{2\cos\dfrac{A+B}2}=\dfrac{\cos\dfrac A2\cos\dfrac B2+\sin\dfrac A2\sin\dfrac B2}{2\left(\cos\dfrac A2\cos\dfrac B2-\sin\dfrac A2\sin\dfrac B2\right)}$$
If this $=1,$ $$3\sin\dfrac A2\sin\dfrac B2=\cos\dfrac A2\cos\dfrac B2\iff\tan\dfrac A2\tan\dfrac B2=\dfrac13$$
Method$\#2:$
Here In a triangle, if $\tan(A/2)$, $\tan(B/2)$, $\tan(C/2)$ are in arithmetic progression, then so are $\cos A$, $\cos B$, $\cos C$,
we have derived $\sin A,\sin B,\sin C$ will be in Arithmetic Progression iff $\cot\dfrac A2,\cot\dfrac B2, \cot\dfrac C2$ are so.
Using In a triangle ABC, prove that cot(A/2)+cot(B/2)+cot(C/2) =cot(A/2)cot(B/2)cot(C/2),
$$\cot\dfrac A2+\cot\dfrac B2+\cot\dfrac C2=\cot\dfrac A2\cot\dfrac B2\cot\dfrac C2$$
Now if $\cot\dfrac A2+\cot\dfrac B2=2\cot\dfrac C2,$
$$3\cot\dfrac C2=\cot\dfrac A2\cot\dfrac B2\cot\dfrac C2$$
As $\cot\dfrac C2\ne0,$ the result follows.