1

Some of the well-known limits that I know and often use:

$$\lim_{x \to 0}{\frac{\sin{x}}{x}}=\lim_{x \to 0}{\frac{\tan{x}}{x}}=1$$ $$\lim_{x \to 0}{\frac{\arcsin{x}}{x}}=\lim_{x \to 0}{\frac{\arctan{x}}{x}}=1$$ $$\lim_{x \to 0}{\frac{e^x-1}{x}}=1$$ $$\lim_{x \to 0}{\frac{a^x-1}{x}}=\ln{a}$$ $$\lim_{x \to 0}{\frac{\ln{(x+1)}}{x}}=1$$ $$\lim_{x \to 0}{(1+x)^{\frac{1}{x}}}=e$$ $$\lim_{|x| \to \infty}{(1+\frac{1}{x})^x}=e$$

Then some less common bur perhaps also useful at times:

$$\lim_{x \to 0}{\frac{x-\sin{x}}{x^3}}=\frac{1}{6}$$ $$\lim_{x \to 0}{\frac{x-\ln{(1+x)}}{x^2}}=\frac{1}{2}$$ $$\lim_{x \to 0}{\frac{e-(1+x)^{\frac{1}{x}}}{x}}=\frac{e}{2}$$

What are some other limits that may turn out to be useful when solving the more difficult ones? Which of them are good to know?

Kyan Cheung
  • 3,184
Jesus
  • 1,798

1 Answers1

1

$$\lim_{x \to \infty}({\frac{x}{x+k}})^{x}=e^{-k}$$ $$\lim_{x \to 0}(1+kx)^{\frac{m}{x}}=\lim_{x \to \infty}(1+\frac{k}{x})^{mx}=e^{mk}$$

$$\lim_{x \to \infty}(x)^{\frac{1}{x}}=1$$ $$\lim_{x \to \infty}{\frac{ln(x)}{x}}=0$$

You can always calculate limits using L'Hospital rule and the standard techniques. And the limits that you have mentioned as less common but useful are some of the standard questions.

Jesus
  • 1,798
Nitish Kumar
  • 1,558