What techniques I could use to solve this limit
$$\lim_{x \to 0} \frac{x^3-x\cos x }{\sin x}$$
without l'Hopital?
When I use l'Hopital the limit is $-1$.
With l'Hopital $$\lim_{x \to 0} \frac{3x^2-1\cdot \cos x+x\sin x}{\cos x}=$$ $$=\frac{3\cdot 0-1\cdot 1+1\cdot 0}{1}=$$ $$=\frac{-1}{1}=-1$$