I need to prove that :
$$ \frac{1}{2} + \cos (\theta ) + \cos(2\theta ) + ... + \cos(n \theta) = \frac{\sin((n+\frac{1}{2})\theta))}{2\sin(\frac{\theta}{2}))} \;\;\;\;\;\; (1)$$
What I did :
- I have evaluated this series using Euler's formulas :
$\displaystyle\sum_{k=1}^{n} e^{ik\theta} =\sum_{k=0}^{n}(e^{ik\theta}) - 1 =e^{i\theta} \frac{1 - e^{i(n+1))\theta } }{1 - e^{i\theta}} - 1 =e^{i\theta} \cdot e^{i\frac{n\theta}{2}} \frac{\sin(\frac{n+1}{2}\theta)}{\sin(\frac{\theta}{2}))} -1 =e^{i(\theta+\frac{n\theta}{2})} \frac{\sin(\frac{n+1}{2}\theta)}{\sin(\frac{\theta}{2}))} - 1$
- Now, knowing that $\cos(x)=\Re(e^{ix})$ we get :
$\displaystyle\sum_{k=1}^{n} \cos(kx) = \Re(\sum_{k=1}^{n} e^{ik\theta} ) = \cos(\theta + \frac{n\theta}{2})\frac{\sin(\frac{n+1}{2}\theta)}{\sin(\frac{\theta}{2}))} - 1 $
- Re-plugging into (1) we have the following equation :
$\displaystyle\frac{1}{2} + \cos(\theta + \frac{n\theta}{2})\frac{\sin(\frac{n+1}{2}\theta)}{\sin(\frac{\theta}{2}))} - 1 = -\frac{1}{2} + \cos(\theta + \frac{n\theta}{2})\frac{\sin(\frac{n+1}{2}\theta)}{\sin(\frac{\theta}{2}))} $
Am I doing something wrong ? Because I have the feeling that the argument in cos is not right. If the argument are the same in cos and sin I can use some trigonometric identities and finish the proof.
Thank you in advance.