$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{{1 \over \root{2\pi}}
\int_{-\infty}^{\infty}{\expo{-x^{2}} \over 1 + x^{2}}\,\dd x} =
{\expo{} \over \root{2\pi}}
\int_{-\infty}^{\infty}{\expo{-\pars{x^{2} + 1}} \over
1 + x^{2}}\,\dd x
\\[5mm] = &\
{\expo{} \over \root{2\pi}}
\int_{-\infty}^{\infty}
\int_{1}^{\infty}\expo{-\pars{x^{2} + 1}y}\,\,\dd y\,\dd x
\\[5mm] = &\
{\expo{} \over \root{2\pi}}
\int_{1}^{\infty}\expo{-y}\int_{-\infty}^{\infty}
\expo{-yx^{2}}\,\,\dd x\,\dd y =
{\expo{} \over \root{2\pi}}\int_{1}^{\infty}\expo{-y}
\pars{\root{\pi}y^{-1/2}}\dd y
\\[5mm] = &\
\root{2}\expo{}\int_{1}^{\infty}\expo{-y^{2}}\,\dd y =
\root{2}\expo{}\bracks{{\root{\pi} \over 2}\on{erfc}\pars{1}}
\\[5mm] & = \bbx{{\root{2\pi} \over 2}\,\expo{}\on{erfc}\pars{1}}
\approx 0.5359\\ &
\end{align}
See this DLMF link.