From Problem 3.16(c) of Boyd & Vandenberghe's Convex Optimization:
Determine if $f(x_1,x_2) = \frac{1}{x_1x_2}$ is convex, quasiconvex, concave, or quasiconcave on $\mathbb{R}^2_{++}$.
From this post Determining whether $\alpha$ sublevel sets are convex I tried to plot it with mesh in Matlab, and I think it is convex on $\mathbb{R}^2_{++}$. But I'm stuck trying to prove it with the definition. My current attempt:
We have for $(x_1, y_1) \in \mathbb{R}^2_{++}$ and $(x_2, y_2) \in \mathbb{R}^2_{++}$, i.e., $x_1, x_2, y_1, y_2 > 0$, and $0 \leq \theta \leq 1$,
\begin{align*} f\left(\theta(x_1,y_1) + (1-\theta)(x_2,y_2)\right) &= f\left(\theta x_1 + (1-\theta)x_2, \theta y_1 + (1-\theta)y_2\right) \\ &= \frac{1}{(\theta x_1 + (1-\theta)x_2)(\theta y_1 + (1-\theta)y_2)} \\ &= \frac{1}{\theta^2 x_1y_1 + \theta(1-\theta)(x_1y_2 + x_2y_1) + (1-\theta)^2x_2y_2} \\ &< \frac{1}{\theta^2 x_1y_1 + (1-\theta)^2x_2y_2} \\ \end{align*}
I know ultimately I need to show that $$\frac{1}{\theta^2 x_1y_1 + (1-\theta)^2x_2y_2} \leq \frac{\theta}{x_1y_1} + \frac{1-\theta}{x_2y_2}$$ but I'm not sure how to proceed or whether my approach is wrong. I don't think partial fraction expansion strategy applies here because we have different variables. Any hints?