I found some combinatorial identities in my old notebooks, but I cannot recall how I derived them. Can anyone help provide the most elementary/elegant proofs for the following identity? Specifically, the connection between the summation and either of the two closed-form expressions.
$$ \sum_{k=0}^n{ \binom{2k}{k} 2^{2n-2k} } = (2n+1) \binom{2n}{n} = \frac{n+1}{2} \binom{2(n+1)}{n+1} $$
Some specific cases written out for some simple visualization: ($n=0$ through $n=3$) $$ \begin{align} \binom{0}{0} 2^{0} &= 1\binom{0}{0} = \frac{1}{2}\binom{2}{1} \\ \binom{0}{0} 2^{2} + \binom{2}{1} 2^{0} &= 3\binom{2}{1} = \frac{2}{2}\binom{4}{2} \\ \binom{0}{0} 2^{4} + \binom{2}{1} 2^{2} + \binom{4}{2} 2^{0} &= 5\binom{4}{2} = \frac{3}{2}\binom{6}{3}\\ \binom{0}{0} 2^{6} + \binom{2}{1} 2^{4} + \binom{4}{2} 2^{2} + \binom{6}{3} 2^{0} &= 7\binom{6}{3} = \frac{4}{2}\binom{8}{4} \end{align} $$
EDIT: I should specify that I have already found an inductive proof, but it is not satisfying to me. I am specifically looking for a bijective/double-counting proof ideally.