Anyone can help solve th following? $\left( {\begin{array}{*{20}{c}} {2n} \\ n \end{array}} \right)$ means $2n$ chooses $n$. Thanks!
$\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{c}} {2k} \\ k \end{array}} \right){2^{ - 2k}}} = \sum\limits_{k = 0}^n {\frac{{(2k)!}}{{k!k!}}{2^{ - 2k}}} = \frac{{(2n)!}}{{n!n!}}(2n + 1){2^{ - 2n}} = \left( {\begin{array}{*{20}{c}} {2n} \\ n \end{array}} \right){2^{ - 2n}}(2n + 1)$
The report from wolframalpha shows they indeed equal.
