I am trying to evaluate
$$T = \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{{1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}}}{{{n^2}}}} \right)^n}.$$
My solution is as follow
$$T = \mathop {\lim }\limits_{n \to \infty } {\left( {1 + \frac{{1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}}}{{{n^2}}}} \right)^n} \Rightarrow T = {e^{\mathop {\lim }\limits_{n \to \infty } n\left( {1 + \frac{{1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}}}{{{n^2}}} - 1} \right)}} = {e^{\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}}}{n}} \right)}}$$
$$T = {e^{\mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{n} + \frac{1}{{2n}} + \frac{1}{{3n}} + \cdots + \frac{1}{{{n^2}}}} \right)}} = {e^{\left( {0 + 0 + \cdots + 0} \right)}} = {e^0} = 1$$
The solution is correct but I presume my approach $\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{1 + \frac{1}{2} + \frac{1}{3} + \cdot + \frac{1}{n}}}{n}} \right) \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{n} + \frac{1}{{2n}} + \frac{1}{{3n}} + \cdot + \frac{1}{{{n^2}}}} \right) = 0$ is wrong.
Is there any generalized method