Finding $\lim_{n\rightarrow\infty}(1+\frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}{n^2})^n$
What I have try so for as
The limit is in the form of $1^\infty$
So Finding $\lim_{n\rightarrow\infty}(1+\frac{1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}}{n^2})^n=e^{\lim n\rightarrow\infty}\frac{1}{n}(1+\frac{1}{2}+\frac{1}{3}+\cdots\frac{1}{n})$
How do I solve further
Please help me