- $u_0>1$
- $u_{n+1}=u_n^{u_n}$
We want to show that :
- the sequence $u_n$ diverges
- $ \sum \dfrac{1}{u_n}$ converges
- $ \exists N \in \mathbb{N} , \forall k : u_{N+k} \geq k+2$
- $\exists C >0, \forall n \geq N : \sum_{k=n+1}^{ \infty} \dfrac{1}{u_k} \leq \dfrac{C}{u_{n+1}} $
- $\forall n \geq N : u_n \sum_{k=n+1}^{ \infty} \dfrac{1}{u_k} \leq \dfrac{C} {u_n^{u_n-1} }$
My attempt :
$ \begin{align*} \phi(x) &=x^x \\ \phi'(x)&= ( \ln x +1 ) x^x \\ \end{align*} $
$\phi$ is decreasing on $]0, \dfrac{1} {e}]$ then increasing on $[ \dfrac{1} {e}, +\infty[$
1.
$ \begin{align*} u_1&= u_0^{u_0} \\ u_2&=u_0^{ u_0 \times u_1} \\ u_n &> u_0^{u_0 ^n} \\ u_n &> \exp ( u_0^n \ln (u_0) ) \\ u_0 &>1 \\ u_n &\to \infty \end{align*} $
2.
$ \begin{align*} w_n&= u_0^{ u_0^n } \\ u_n &> w_n \\ \dfrac{1}{u_n} &< \dfrac{1}{w_n} \\ \dfrac{w_{n+1} }{w_n} &= u_0^{ u_0^n (1-u_0) } \\ \dfrac{w_{n+1} }{w_n} &< 1 \\ \sum \dfrac{1}{u_n} &< \infty \\ \end{align*} $
3.
$ \begin{align*} u_n &\underset{ n \to \infty} \to \infty\\ \exists N, u_N &> 2 \\ j >2 &\implies j^2 > j+1 \\ u_{N+1} &=u_N^{ u_N }\\ &> u_N^2 \\ &> u_N +1 \\ u_{N+k} &> k+1 \\ \end{align*} $
4.
$\begin{align*} \forall k \leq 0, u_{N+1+k}&=u_{k+N}^{ u_{k+N} } \\ &> u_{N+1}^{k+1} \\ \dfrac{1}{ u_{N+1+k}} &< \dfrac{1}{ u_{N+1} u_{N+1}^k} \\ \sum_{k=0}^{ \infty}\dfrac{1}{ u_{N+1+k}} &< \sum_{k=0}^{ \infty} \dfrac{1}{ u_{N+1} u_{N+1}^k} \\ &< \dfrac{1}{ u_{N+1}} \sum_{k=0}^{ \infty}\dfrac{1}{ u_{N+1}^k} \\ &< \dfrac{1}{ u_{N+1}} C \\ \end{align*} $
5.
We multiply the relation given in (4) by $u_n$