- $0<x<1$
- $u_0 \in \mathbb{N}$ and $u_0 \geq 2$
- $u_{n+1}= u_n ^{ u_n}$
- $\alpha= \sum_{n=0}^{+ \infty} \dfrac{1}{u_n}$
- We want to prove that the series $\sum \dfrac{x^n}{ \sin ( \pi \alpha n) }$ diverges.
My attempt : The sequence $(u_n)_n$ has been studied here
$ \begin{align*} \forall j, u_{j+1}&=u_j^{u_j} \in \mathbb{N} \\ \forall j, \forall k<j, u_k &| u_j \\ \forall k, k <n, \dfrac{u_n}{u_k} &\in \mathbb{N} \\ \forall n, u_n \sum_{k=0}^{n} \dfrac{1}{u_k} &\in \mathbb{N} \end{align*} $
$ \begin{align*} \sin( u_n \pi \alpha) &= \sin( u_n \pi \sum_{k=0}^{n} \dfrac{1}{u_n} + u_n \pi \sum_{k=n+1}^{\infty} \dfrac{1}{u_n} ) \\ \sin( u_n \pi \alpha)&= \sin( u_n \pi \sum_{k=n+1}^{\infty} \dfrac{1}{u_n} ) \\ |\sin( u_n \pi \alpha)| & \leq | u_n \pi \sum_{k=n+1}^{\infty} \dfrac{1}{u_n} | \\ |\sin( u_n \pi \alpha)| & \leq u_n \pi \sum_{k=n+1}^{\infty} \dfrac{1}{u_n} \\ & \leq\dfrac{ \pi C }{ u_n^{u_n -1} } \\ \end{align*} $
$C$ is an intercept, that does not depend on $n$.
$$\dfrac{x^{u_n} }{ |\sin( u_n \pi \alpha)| } \geq \dfrac{1}{ \pi C } x^{u_n} u_n^{u_n -1} (\star) $$
We expect to get the divergence from this last inequality called ($\star$). $u_n \to \infty$
We can prove that $\alpha \notin \mathbb{Q}$ Assume that $\alpha= \dfrac{p}{q}$ where $p,q \in \mathbb{Q}$ then
$ \begin{align*} u_n \sum_{k=0}^{n} \dfrac{1}{u_k} &\in \mathbb{N} \\ \alpha=\sum_{k=0}^{\infty} \dfrac{1}{u_k} &\in \mathbb{N}\\ q u_n \sum_{k=n1}^{\infty} \dfrac{1}{u_k} &\in \mathbb{N} \\ q u_n \sum_{k=n1}^{\infty} \dfrac{1}{u_k} &\to 0 \end{align*} $
It is a contradiction so $\alpha \not \in \mathbb{Q}$
We get the divergence from $\star$ because $u_n > n+1$