While simplifying a big integral I had to calculate the following two integrals
$$\int_{0}^{1}\frac{x\space \tan^{-1}(x)}{x^2+3}, \int_{0}^{1}\frac{x\space \tan^{-1}(x)}{3x^2+1}$$
$$I=\int_{0}^{1}\frac{x\space \tan^{-1}(x)}{x^2+3}$$
$$\implies I=\int_{0}^{1}\frac{x}{x^2+3}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1} x^{2n-1} dx$$
$$\implies I=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}\int_{0}^{1}\frac{x^{2n}}{x^2+3} dx$$
Doing same thing with the second integral, we get
$$J=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}\int_{0}^{1}\frac{x^{2n}}{3x^2+1} dx$$
But I am stuck at those 2 integrals
$$\int_{0}^{1}\frac{x^{2n}}{x^2+3} dx, \int_{0}^{1}\frac{x^{2n}}{3x^2+1} dx$$
Since they are almost the same so I think that doing one is enough to evaluate the other integral( Or Correct me If I'm wrong).
Thank you for your help!
