Prove that $$ I =3\int_{0}^{1}\frac{x\arctan x}{3x^2+1}\,\mathrm dx -\int_{0}^{1}\frac{x\arctan x}{x^2+3}\,\mathrm dx =\frac23 G-\frac {\pi}{12}\ln(2+\sqrt{3}). $$
where, $G$ is catalan's constant
Above two Integrals are a part of a integral which I was trying to solve.
Let $I=3I_{1}-I_{2}$
Attempt:-1
$$I_{1}=\int_{0}^{1}\frac{x\arctan x}{x^2+3}\,\mathrm dx$$
$$\implies I_{1}=\int_{0}^{1}\frac{x}{x^2+3}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1} x^{2n-1}\,\mathrm dx$$
$$\implies I_{1}=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}\int_{0}^{1}\frac{x^{2n}}{x^2+3}\,\mathrm dx.$$
From my previous question 1 we have $$ \int_{0}^{1}\frac{x^{2n}}{x^{2}+3}\,\mathrm dx =(-3)^{n}\frac{\pi}{6\sqrt{3}}+\sum_{k=0}^{n-1}\frac{(-3)^{n-1-k}}{2k+1}. $$
Therefore, $$ I_{1}=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}\bigg[(-3)^{n}\frac{\pi}{6\sqrt{3}}+\sum_{k=0}^{n-1}\frac{(-3)^{n-1-k}}{2k+1}\bigg], $$ $$ I_{1}=\sum_{n=1}^{\infty}\sum_{k=0}^{n-1}\frac{(-1)^{2n-k}\space 3^{n-1-k}}{(2k+1)(2n-1)}-\frac{\pi}{6\sqrt{3}}\sum_{n=1}^{\infty}\frac{3^{n}}{2n-1}. $$
Using Desmos Both of the series diverges so $I_{1}$ is of the form $\infty -\infty$ which have a finite answer. Same thing goes with $I_{2}$.
Attempt:- 2:
Try to convert one integral into another. Substitute $x=\frac{1}{x}$ in $I_{1}$, we get
$$I_{1}=-\frac{3\pi}{2}\int_{1}^{\infty}\frac{x}{x^2+3} \,\mathrm dx +3\int_{1}^{\infty}\frac{x \space tan^{-1}x}{x^2+3} \,\mathrm dx $$
$$\implies I=-\frac{3\pi}{2}\int_{1}^{\infty}\frac{x}{x^2+3} \,\mathrm dx -\int_{0}^{\infty}\frac{x \space tan^{-1}x}{x^2+3} \,\mathrm dx +4\int_{1}^{\infty}\frac{x \space tan^{-1}x}{x^2+3} \,\mathrm dx$$
Surprisingly all three integrals diverges and convergence of $I$ is maintained by negative and positive sign.
How can I prove the original result?
Thank you for your help!