23

EDIT : I found an alternative proof which seems correct. You do not have to read until bold letters since they are wrong. I recommend reading from "New Solution".

Show that there are no real solutions of $$1 + \sum_{n = 1}^{\infty} \frac{x^n}{\prod_{k=1}^{n} H_k} = 0$$ where $$H_k = \sum_{i=1}^{k} \frac{1}{i}.$$

I managed to prove this, and I want to know if my proof is correct, and if there are any other (better) ways of proving it. (This is my first question and my English may be incorrect since English is not my first language.)

The overall proof is proving by contradiction :

let $$f(x) = 1 + \sum_{n = 1}^{\infty} \frac{x^n}{\prod_{k=1}^{n} H_k}$$

and suppose a real number $a$ such that $f(a) = 0$. Since $f(x) \geq 1$ for $x \geq 0$, it is trivial that $a \lt 0$.

Just a little distribution :

$$\begin{align} f(x) &= 1 + \sum_{n = 1}^{\infty} \frac{x^n}{\prod_{k=1}^{n} H_k} = 1 + \sum_{n = 1}^{\infty} \left\{ \frac{x^{2n-1}}{\prod_{k=1}^{2n-1} H_k} + \frac{x^{2n}}{\prod_{k=1}^{2n} H_k}\right\} \\ \\ &= 1 + \sum_{n=1}^{\infty} \frac{x^{2n} + H_{2n} x^{2n-1}}{\prod_{k=1}^{2n} H_k} \end{align}$$

and

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \sum_{n=1}^{\infty} \left\{ \frac{x^{2n-1}}{(2n-1)!} + \frac{x^{2n}}{(2n)!} \right\} = 1 + \sum_{n=1}^{\infty} \frac{x^{2n} + 2nx^{2n-1}}{(2n)!} .$$

Meanwhile, $$H_k = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k} \lt k$$ and $$\prod_{k=1}^{2n} H_k \lt (2n)!.$$

Since $a \in \mathbb{R^-}$, $$a^{2n} + H_{2n} a^{2n-1} \gt a^{2n} + 2na^{2n-1}.$$

Therefore, $$0 = f(a) = 1 + \sum_{n=1}^{\infty} \frac{a^{2n} + H_{2n} a^{2n-1}}{\prod_{k=1}^{2n} H_k}$$ $$\gt 1 + \sum_{n=1}^{\infty} \frac{a^{2n} + 2na^{2n-1}}{(2n)!} = e^a \gt 0$$

and it is a contradiction.

Edit : According to the comments, I found out that the following identity can not be concluded right away since $a^{2n} + H_{2n} a^{2n-1}$ may be negative for some $a$.

So now we have to show the whole identity for all $n \in \mathbb{N}$ and $a \in \mathbb{R^-}$ such that $f(a) = 0$ :

$$ \frac{a^{2n} + H_{2n} a^{2n-1}}{\prod_{k=1}^{2n} H_k} \gt \frac{a^{2n} + 2na^{2n-1}}{(2n)!}$$

or prove a weaker statement :

$$ \frac{a^{2n} + H_{2n} a^{2n-1}}{\prod_{k=1}^{2n} H_k} \gt \frac{(a \ln t)^{2n} + 2n(a \ln t)^{2n-1}}{(2n)!}$$

where $t \gt 0$ since the contradiction still holds if $f(a) \gt t^a.$

Since $a^{2n-1} < 0$, the inequality we want to show is equivalent to the following inequalities :

$$\frac{a + H_{2n}}{\prod_{k=1}^{2n} H_k} < \frac{a (\ln t)^{2n} + 2n (\ln t)^{2n-1}}{(2n)!},$$

$$a < \frac{2n \cdot \prod_{k=1}^{2n} H_k \cdot (\ln t)^{2n-1} - (2n)! \cdot H_{2n}}{(2n)! - (\ln t)^{2n} \cdot \prod_{k=1}^{2n} H_k}$$

for all $a \in \mathbb{R^-}$ such that $f(a) = 0.$

My further attempt was trying to show that there exists $t \in \mathbb{R^+}$ such that $$\frac{2n \cdot \prod_{k=1}^{2n} H_k \cdot (\ln t)^{2n-1} - (2n)! \cdot H_{2n}}{(2n)! - (\ln t)^{2n} \cdot \prod_{k=1}^{2n} H_k} \geq 0$$ for all $n \in \mathbb{N}.$

Suppose $t < e$ for a weaker statement, then $\ln t < 1$ and $$(2n)! - (\ln t)^{2n} \cdot \prod_{k=1}^{2n} H_k > (2n)! - \prod_{k=1}^{2n} H_k > 0,$$

and we get to prove: $$2n \cdot \prod_{k=1}^{2n} H_k \cdot (\ln t)^{2n-1} - (2n)! \cdot H_{2n} \geq 0$$

or

$$\ln t \geq \left\{ \frac{(2n-1)!}{\prod_{k=1}^{2n-1} H_k} \right\}^{\frac{1}{2n-1}} =: F(n).$$

If there exists $M \in \mathbb{R}$ such that $F(n) < M$ for all $n \in \mathbb{N}$, such $t \in \mathbb{R^+}$ will exist and the inequality above will hold.

I am now struggling to prove this with the identities :

$$\ln n + \frac{1}{n} < H_n < \ln n + 1$$

for $n \in \mathbb{N}$, and

$$\ln k = \sum_{n=1}^{\infty} \frac{1}{n} \cdot \left( \frac{k - 1}{k} \right)^n$$

for $\frac{1}{2} < k \in \mathbb{R}.$

Bad News : The function $F(n)$ seems to diverge when $n \to \infty$, according to here.

New Solution

Note that $f$ is defined for all $x \in \mathbb{R}$ and if $f(a) = 0$ for $a \in \mathbb{R}$ then $a < 0$. Assume $a < 0$ exists.

For $n \in \mathbb{N}$,

$$\begin{align} \int_{a}^{0} \frac{x^{n}-a^{n}}{x-a} dx &= \int_{a}^{0} (x^{n-1} + ax^{x-2} + \cdots + a^{n-1}) dx \\ \\ &= \left[ \sum_{k=0}^{n-1} \frac{a^{k}}{n-k} x^{n-k} \right]_{a}^{0} = - a^{n} \sum_{k=1}^{n} \frac{1}{k} = - a^{n} H_{n} \end{align}$$

Using this result,

$$\begin{align} \int_{a}^{0} \frac{f(x)}{x-a} dx &= \int_{a}^{0} \frac{f(x) - f(a)}{x-a} dx \\ \\ &= \int_{a}^{0} \frac{1}{x-a} \left[ \sum_{n=1}^{\infty} \frac{x^{n}}{H_{1} H_{2} \cdots H_{n}} - \sum_{n=1}^{\infty} \frac{a^{n}}{H_{1} H_{2} \cdots H_{n}} \right] dx \\ \\ &= \int_{a}^{0} \frac{1}{x-a} \left[ \sum_{n=1}^{\infty} \frac{x^{n} - a^{n}}{H_{1} H_{2} \cdots H_{n}} \right] dx \\ \\ &= \sum_{n=1}^{\infty} \frac{1}{H_{1} H_{2} \cdots H_{n}} \int_{a}^{0} \frac{x^{n} - a^{n}}{x-a} dx \\ \\ &= - \sum_{n=1}^{\infty} \frac{a^{n} H_{n}}{H_{1} H_{2} \cdots H_{n}} \\ \\ &= -a - \sum_{n=2}^{\infty} \frac{a^{n} H_{n}}{H_{1} H_{2} \cdots H_{n}} \\ \\ &= -a - a \sum_{n=2}^{\infty} \frac{a^{n-1}}{H_{1} H_{2} \cdots H_{n-1}} \\ \\ &= -a - a \sum_{n=1}^{\infty} \frac{a^{n}}{H_{1} H_{2} \cdots H_{n}} \\ \\ &= - a \cdot \left[ 1 + \sum_{n=1}^{\infty} \frac{a^{n}}{H_{1} H_{2} \cdots H_{n}} \right] \\ \\ &= - a f(a) \\ \\ &= 0 \end{align}$$

Since $f(0) = 1$, $f(a) = 0$ and $\int_{a}^{0} \frac{f(x)}{x-a} dx = 0$, there exists real number $a_{1} \in (a, 0)$ such that $f(a_{1}) = 0$. (If not, then it is a contradiction since $f \ge 0$ on $(a, 0)$, not $f = 0$ everywhere since $f(0) = 1$, but $\int_{a}^{0} \frac{f(x)}{x-a} dx = 0$.)

Similarly, we can find $a_{n+1} \in (a_{n}, 0)$ such that $f(a_{n+1}) = 0$.

Now there are two ways to prove that this is impossible.

First, since $f$ is an entire function, its zero-set should not have accumulation points. However, we can find infinite zeros in the interval $(a, 0)$ and it is a contradiction.

Second, let the (partial) zero-set of $f$ be $S$ such that $S \subseteq (a, 0)$. Since $S$ is bounded above, there exists $s := \sup S$. Now we can find a sequence $\{ s_{n} \}_{n \in \mathbb{N}}$ in $S$, that converges to $s$. Since $f$ is continuous, $0 = \lim_{n \to \infty} f(s_{n}) = f(s)$.

Since $s$ is a zero of $f$, there exists $s' \in (s, 0)$ such that $f(s') = 0$. Since $s' \in S$, if $s \ne 0$ then it contradicts the fact that $s = \sup S$.

If $s = 0$, $f(s) = f(0) = 0$ because $s$ is a zero of $f$. However, it is trivial that $f(0) = 1$ and it is a contradiction.

Therefore, if $f(z) = 0$ then $z \in \mathbb{C} \, \backslash \, \mathbb{R}$.

Vue
  • 1,375
  • Why $$\frac{a^{2n} + H_{2n} a^{2n-1}}{\prod_{k=1}^{2n} H_k}>\frac{a^{2n} + 2na^{2n-1}}{(2n)!}?$$ Wouldn't this depend on the sign of the numerator? – leoli1 Aug 09 '21 at 15:35
  • @leoli1 I showed the numerator above, and the denominator is positive. – Vue Aug 09 '21 at 15:38
  • 3
    I agree with $a^{2n} + H_{2n} a^{2n-1}>a^{2n} + 2na^{2n-1}$ and $\prod_{k=1}^{2n} H_k<(2n)!$ but in order to conclude the inequality above we also need $a^{2n} + H_{2n} a^{2n-1}\geq0$ – leoli1 Aug 09 '21 at 15:42
  • @saulspatz: but $a^{2n}$ is positive, yes? – abiessu Aug 09 '21 at 15:47
  • @leoli1 Yes, that was a mistake. – saulspatz Aug 09 '21 at 15:48
  • Really, for a given $a$, there may be some terms with $|a|\ge 2n\ge H_{2n}$, but the majority will be $2n\ge H_{2n}\ge |a|$... – abiessu Aug 09 '21 at 15:50
  • @leoli1 Sorry, I still don't understand why we need that. I think I'm missing something.. I don't get it. – Vue Aug 09 '21 at 15:51
  • 9
    This is a very good first post, whether or not the proof turns out to be correct in all details. Clearly written, shows your effort, excellent MathJax. Welcome to MSE. – saulspatz Aug 09 '21 at 15:52
  • @Vue: if the numerator is not positive, then the comparison of the denominators matters again for the purpose of the whole inequality. – abiessu Aug 09 '21 at 15:53
  • @abiessu I see. – Vue Aug 09 '21 at 15:58
  • I suspect that $f(x) = 1 + \sum_{n = 1}^{\infty} \frac{x^n}{\prod_{k=1}^{n} H_k} \ge e^{x}$ whence the statement follows because $e^{x}\gt0$ for real $x$. – Dr. Wolfgang Hintze Aug 10 '21 at 14:02

1 Answers1

1

Partial answer .

We have for $x\in(\phi,0]$ and $n\geq 2$:

$$\left(-1\right)^{1+n}\left(x^{n}+x^{n+1}\right)-\left(\frac{x^{n}}{\prod_{k=1}^{n}\sum_{i=1}^{k}\frac{1}{i}}+\frac{x^{\left(n+1\right)}}{\prod_{k=1}^{n+1}\sum_{i=1}^{k}\frac{1}{i}}\right)\le0$$

So we need to show that $x\in(\phi,0]$:

$$1-x^2+x>0$$

$$\phi=-\frac{\left(-1+\sqrt{5}\right)}{2}$$

Which is true

Conjecture :


Let $x\in[-(\ln(n)-1),0]$ $n\geq 1$ an integer it seems we have the inequality :

$$-\left(\frac{x^{n}}{\prod_{k=1}^{n}\sum_{i=1}^{k}\frac{1}{i}}+\frac{x^{\left(n+1\right)}}{\prod_{k=1}^{n+1}\sum_{i=1}^{k}\frac{1}{i}}\right)+\left(-1\right)^{n}\frac{x^{\left(2n-2\right)}}{\left(n-1\right)^{n}}+\left(-1\right)^{1+n}\frac{x^{\left(2n\right)}}{\left(n\right)^{1+n}}-\frac{6}{\pi^{2}n^{2}}<0$$

Edit 31/01/2023 :

Conjecture :

For $n\geq 1 $ an odd integer and $x\leq 0$ it seems we have :

$$f\left(x\right)=-\left(\frac{x^{n}}{\prod_{k=1}^{n}\sum_{i=1}^{k}\frac{1}{i}}+\frac{x^{\left(n+1\right)}}{\prod_{k=1}^{n+1}\sum_{i=1}^{k}\frac{1}{i}}\right)+\left(-1\right)^{n}\frac{x^{\left(2n+2\right)}}{\left(\frac{4}{5}n-1\right)!}+\left(-1\right)^{1+n}\frac{x^{\left(2n\right)}}{\left(\frac{4}{5}n\right)!}-C_n<0$$

Where $C_n$ are constants depending on $n$

On the other hand it seems we have for $n\geq 2$ an even integer and $x\leq 0$ :

$$f\left(x\right)=-\left(\frac{x^{n}}{\prod_{k=1}^{n}\sum_{i=1}^{k}\frac{1}{i}}+\frac{x^{\left(n+1\right)}}{\prod_{k=1}^{n+1}\sum_{i=1}^{k}\frac{1}{i}}\right)-\left(\frac{x^{2n}}{\left(\frac{4}{5}n\right)!}\right)\leq 0$$

To be continued...