$$\left\{ \frac{n!}{\prod_{k=1}^{n} H_k} \right\}^{\frac{1}{n}}=\left\{\prod_{k=1}^{n} \frac{k}{H_k} \right\}^{\frac{1}{n}}$$
Now, because $H_k = \log(k) +O(1)$, $\frac{k}{H_k} \to \infty $ and hence the geometric mean also tends to infinity.
Let's do a informal approximation using $H_k \approx \log(k) +\gamma$
Letting $x = k/n$:
$$\begin{align}
\log( H_k) &\approx \log( \log n +\log x +\gamma)\\
&=\log \log n+ \log\left(1+ \frac{\log x + \gamma}{\log n}\right)\\
&\approx
\log \log n+ \frac{1}{\log n}(\log x + \gamma)
\end{align}$$
and
$$ \log \frac{k}{H_k} \approx \log(n) + \log(x) - \log \log n -\frac{1}{\log n}(\log x + \gamma) $$
Hence, because $\int_0^1 \log(x)dx =-1$:
$$ \frac{1}{n} \sum_{k=1}^n \log \frac{k}{H_k} \approx
\log(n) - \log \log n - 1 + \frac{1-\gamma }{\log n} = \log\left(\frac{n}{\log n }\right) - 1 + o(1)
$$
(it indeed tends to infinity, quite slowly) and
$$ \left\{ \frac{n!}{\prod_{k=1}^{n} H_k} \right\}^{\frac{1}{n}}\approx \frac{n}{ e \log(n)} \to \infty
$$