I think that this is an exercise. I can not find a solution.
We can define Lie bracket multiplication on $\mathbb{C}^3$ : $$ x\wedge y $$ where $x=(x_1,x_2, x_3)$, $y= (y_1,y_2,y_3)$, and $\wedge $ is the wedge product we know.
Consider the Lie algebra $\mathfrak {sl}(2,\mathbb{C})= \{ X\in M_2(\mathbb{C}) \mid\ {\rm Trace} (X) =0\}$ and $$ e= \left( \begin{array}{cc} 0 & 1 \\ 0 & 0 \\ \end{array} \right),\ f= \left( \begin{array}{cc} 0 & 0 \\ 1 & 0 \\ \end{array} \right),\ h= \left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \\ \end{array} \right). $$ Note that $$ [e,f]=h,\ [e,h]=-2e,\ [f,h]=2f.$$
Here, the problem is to find an explicit isomorphism between $\mathfrak {sl}(2,\mathbb{ C})$ and $\mathbb{C}^3$.
Thank you in advance.