We have the following equation with initial condition \begin{align*} u_y + uu_x &= 0\\ u(x,0)&=\frac{1}{1+x^2}\quad x\in\mathbb{R} \end{align*} let's say $g(x)=\dfrac{1}{1+x^2}$ and corresponding to the manifold $\Gamma$ in the $xyz$ space given by \begin{equation} x = s,\quad y = 0,\quad z = g (s) \end{equation} The characteristic differential equations \begin{equation*} \frac{dx}{dt}=z\quad \frac{dy}{dt}=1\quad \frac{dz}{dt}=0 \end{equation*} Integrating each of the expressions we have \begin{align*} \int dx&=\int z dt\\ x&=zt \end{align*} also \begin{align*} \int dy&=\int 1 dt\\ y&=t \end{align*} and \begin{align*} \int dz&=\int 0 dt\\ z&=0 \end{align*} combined with the initial condition for $t=0$ lead to the parametric representation \begin{equation*} x=s+zt,\quad y=t, \quad z=g(s) \end{equation*} now as \begin{equation*} s=x-zt\quad \text{and}\quad y=t \quad \text{and}\quad z=g(s) \end{equation*} For the solution $z=u(x,y)$ then yields the implicit equation \begin{equation*} u=g(x-uy)=\frac{1}{1+(x-uy)^2} \end{equation*} now the study is going to be done of Weak (or Integral) Solutions as the characteristic is given by \begin{equation*} x=\frac{y}{1+\xi^2}+\xi \end{equation*} it is necessary that this characteristic presents shock to do the study according to the study made by the book (artial Differential Equations in Action From Modelling to Theory) page 199 to find $y_s$ (breaking time) and the location $x_s$ the following is done where $q(u)=u^2 / 2$ then $q'(u)=u$ and $q''(u)=1$ \begin{equation*} z(\xi)=-q''(g(\xi))g'(\xi)=-1\cdot \frac{-2x}{\left(1+x^2\right)^2}=\frac{2x}{\left(1+x^2\right)^2} \end{equation*} and the maximum point of $z(\xi)$ is $\left(\sqrt{\frac{1}{3}},\:\frac{3\sqrt{3}}{8}\right)$ then $\xi_M=\sqrt{\frac{1}{3}}$ and $z(\xi_M)=\frac{3\sqrt{3}}{8}$ then \begin{equation*} y_s=\frac{1}{z(\xi_M)}=\frac{1}{\frac{3\sqrt{3}}{8}}=\frac{8}{3\sqrt{3}} \end{equation*} and \begin{equation*} x_s=q'(g(\xi_M))y+\xi_M=\frac{1}{1 + (\sqrt{1/3})^2}\left(\frac{8}{3\sqrt{3}}\right)+\sqrt{\frac{1}{3}}=\frac{2}{\sqrt{3}}+\sqrt{\frac{1}{3}} \end{equation*}
therefore $\displaystyle (x_s,y_s)=(\frac{2}{\sqrt{3}}+\sqrt{\frac{1}{3}},\frac{8}{3\sqrt{3}})$
1)My question is already having all these data, how can I do the study of Rankine-Hugoniot condition?
Your answers would be of great help. Thank you very much. I remain attentive to your answer.