It sounds like such a simple thing to do and yet i'm stuck. I appreciate any help or guidance.
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{x} e^{(kt)} f(t) \,\mathrm{d}t $$
I tried this method: $$\int_{0}^{x} e^{(kt)} f(t) \,\mathrm{d}t =F(x)-F(0)$$ $$\frac{\mathrm{d}}{\mathrm{d}x} \left(F(x)-F(0)\right) = \frac{\mathrm{d}}{\mathrm{d}x} (F(x)) \overset{?}{=} \frac{\mathrm{d}}{\mathrm{d}x} \left(\int e^{(kx)} f(x) \,\mathrm{d}x\right)= e^{(kx)} f(x)$$ But I'm not sure if the one but last step is "ok" to do. I'm looking for a better way to justify this.