More precisely:
Given an algebraic number $a\ge0$, can we determine if there exists a rational number $b$ such that $$\arctan (a)=\int_0^a \frac{dx}{x^2+1}=\pi b?$$ If so, can we find the rational number $b$?
Examples: $$\arctan (2-\sqrt{3})=\frac{\pi}{12}$$ $$\arctan \left(\sqrt{5-2\sqrt{5}}\right)=\frac{\pi}{5}$$
Note: I know how to do the "reverse procedure" (i.e. given a rational number $b$, find the algebraic number $\tan (\pi b)$).