Let $$A=\int_0^1 \dfrac{dx}{\sqrt{1-x^4}}.$$ Given an algebraic number $0\le a\le 1$, can we determine if there exists a rational number $b$ such that $$\int_0^a \dfrac{dx}{\sqrt{1-x^4}}=Ab?$$ If so, can we find the rational number $b$?
Examples: $$\int_0^{\sqrt{\sqrt{2}-1}}\dfrac{dx}{\sqrt{1-x^4}}=\dfrac{1}{2}A,$$ $$\int_0^{\frac{1}{2}(\sqrt{3}+1-\sqrt[4]{12})}\dfrac{dx}{\sqrt{1-x^4}}=\dfrac{1}{3}A.$$
Note: The reverse procedure, however, is easy and I know how to do it (i.e. given $Ab$, find the algebraic number $a\in [0,1]$ such that $\int_0^a dx/\sqrt{1-x^4}=Ab$). The key is to use the addition formula of the elliptic function corresponding to the elliptic integral.
This is a follow-up question to Given an algebraic number $a$, find the closed form of $\arctan (a)$, so I tried to build on analogy. The problem in that question is finding the rational number $b$ such that $$\arctan (a)=\int_0^a \dfrac{dx}{1+x^2}=\pi b$$ for a given algebraic $a\ge 0$. The key to that problem was expressing $e^{i\theta}$ as an algebraic function of $a=\tan (\theta)$ where $\theta$ is the division point, checking if $(e^{i\theta})^n=1$ for some positive integers $n$ and finding a non-trivial lower bound for the degree of the $n$th cyclotomic polynomial, so that there are only finitely many cases to check and this gives an algorithm.
However, in the elliptic integral case, I'm not aware of an elliptic analog of the exponential function. I know that inverting the elliptic integral on $[0,1]$, $$\int_0^{f(u)} \dfrac{dx}{\sqrt{1-x^4}}=u,$$ gives an elliptic function $f$ with addition formula $$f(x+y)=\dfrac{f(x)f'(y)+f(y)f'(x)}{1+f(x)^2f(y)^2}$$ where $f'$ is an algebraic function of $f$. This should be somehow analogous to the "tangent case" in my previous question because $$\tan (x+y)=\dfrac{\tan (x)+\tan (y)}{1-\tan (x)\tan (y)},$$ but I really don't know what to do next.
Note that $A$ can be expressed by the gamma function as $$A=\dfrac{\Gamma (1/4)^2}{4\sqrt{2}\Gamma (1/2)}.$$ It is possible that an answer to my question is not as elementary and is at least as hard as proving, for example, $$\int_0^2 \dfrac{dx}{\sqrt{1+x^3}}=\dfrac{\Gamma (1/6)\Gamma (1/3)}{6\Gamma (1/2)},$$ which is another example of an elliptic integral. Answers (Prove: $\int_0^2 \frac{dx}{\sqrt{1+x^3}}=\frac{\Gamma\left(\frac{1}{6}\right)\Gamma\left(\frac{1}{3}\right)}{6\Gamma\left(\frac{1}{2}\right)}$) to that problem use sophisticated tools from the theory of elliptic curves and hypergeometric functions.