In a deck of $32$ cards ({7, 8, 9, 10, Jack, Queen, King, Ace} × {♣, ♠, ♥, ♦})
$10 $cards are drawn simultaneously. Give the probability of having exactly $2$ aces, at least $2$ hearts and at most $3$ kings.
It's a difficult question. There are a lot of cases to deal with.
Addition 1 It's ok, i have an answer from my friend , this probability is 23,2 %
Addition 2 I give the answer from my french friend in original language (now translated)
For a "hand" of $10$ cards having the required properties, we define the integers $x,y,z$ by: $x:= \text{ number of kings present in the hand: }\: x\in \{0,1,2,3\}.$ $y: = \text{ number of kings of hearts present in the hand: }\: y \in \{0,1\}.$ $z:= \text{ number of aces of hearts present in the hand: } \: z\in \{0,1\}.$ $$\begin{array} {|c|c|}\hline (x,y,z) &\text{nombre de mains de type }(x,y,z)\\ \hline (0,0,0)& 3\times \left[ \binom {24}8 -\binom {18} 8 -6 \binom {18}7 \right]\\ \hline (0,0,1) & 3\times\left[ \binom{24}8 - \binom{18}8\right]\\ \hline (1,0,0) &9 \times\left[ \binom{24}7 - \binom{18}7 -6\binom{18}6\right] \\\hline (1,0,1)& 9 \times \left[\binom{24}7 - \binom{18} 7 \right]\\ \hline (1,1,0) & 3\times \left[ \binom {24}7 - \binom {18} 7 \right]\\\hline (1,1,1)& 3 \times \binom {24 }7 \\ \hline (2,0,0)& 9\times \left[ \binom {24}6 - \binom {18}6 -6\binom {18}5\right] \\ \hline(2,0,1)& 9 \times \left[ \binom{24}6 -\binom {18}6 \right] \\ \hline ( (2,1,0) & 9\times \left[ \binom{24}6 - \binom {18}6 \right] \\ \hline\hline (2,1,1)& 9 \times \binom {24} 6 \\ \hline (3,0,0)& 3 \times \left[\binom{24}5 - \binom{18}5 - 6 \binom{18}4\right] \\ \hline (3,0,1)& 3 \times\left[ \binom{24}5 - \binom {18}5 \right] \\ \hline (3,1,0) & 9 \times \left[ \binom{24}5 - \binom{18}5 \right] \\ \hline (3,1,1) & 9 \times \binom {24}5 \\ \hline\end{array}$$ Let $A$ be the event whose probability is to be determined. $\mathbb P(A) = \dfrac {\text{Card } A}{\text{Card }\Omega}, \:\text{Card }\Omega = \binom {32}{10},\:\text{Card }A =6\binom {24}8 +24 \binom {24}7 + 36 \binom {24}6 +24 \binom {24}5 -6 \binom {18}8 - 39 \binom {18}7 -81 \binom {18}6 - 69 \binom {18}5 -18 \binom {18}4.$ $$ \mathbb P(A) = \dfrac {14931234}{64542240} = 0.2314480.\dots .$$
NB we can simplify with a much simpler count: $$ \text{Card } A= a-b$$ where $a$ is the number of hands of $10$ cards with exactly $2$ aces and at least $2$ hearts and $b$ the number of these hands having the $4$ kings. $a= 3\times \left [\Big(\binom {28}8 -\binom {21}8 -7\binom {21}7 \Big )+ \Big( \binom {28}8 - \binom{21}8 \Big) \right] \qquad b =6\binom {24}4 - 3\binom {18}4, \qquad \text{Card } A= 6\binom{28}8 +3\binom{18}4 -6\binom {21}8 -21 \binom{21} 7 - 6 \binom {24}4 =14931234.$
ADDITION 3 in the answer of leonbloy I rather find
$$ P(A=2,H=0) = \frac{1}{\binom{32}{10}} \binom{3}{2} \binom{21}{8}$$
$$ P(A=2,H=1) = \frac{1}{\binom{32}{10}} \binom{3}{2} \binom{7}{1} \binom{21}{7}+\frac{1}{\binom{32}{10}} \binom{1}{1} \binom{3}{1} \binom{21}{8}$$
$$ P(A=2,K=4) = \frac{1}{\binom{32}{10}} \binom{4}{2} \binom{4}{4} \binom{24}{4}$$
$$ P(A=2,H=0, K=4) = 0$$
$$ P(A=2,H=1, K=4) =\frac{1}{\binom{32}{10}} \binom{3}{2} \binom{4}{4} \binom{18}{4}$$
