2

show that $$\int_{-\infty}^{\infty} \frac {(\sin x) (x^2+a^2)}{x(x^2+b^2)}dx=\frac{\pi(a^2+e^{-b}(b^2-a^2))}{b^2}$$

for every $a,b>0$

thanks for all

Ron Gordon
  • 138,521
mnsh
  • 5,875
  • Have you tried using the same techniques as in this answer? – Git Gud Jul 27 '13 at 01:35
  • @GitGud if you mean using contour method Iam beginning at this method or the second method using transformation Its so beautiful but also its so complex to deal with it at this time but in near future Iam going to improve my skill to use this method – mnsh Jul 27 '13 at 01:47

1 Answers1

4

Consider the contour integral

$$\oint_C dz \frac{(z^2+a^2) e^{i z}}{z (z^2+b^2)}$$

where $C$ is the semicircular contour of radius $R$ in the upper half-plane, with an additional semicircular contour of radius $\epsilon$ centered at the origin, jutting into the upper half-plane.

enter image description here

The contour integral is equal to

$$\int_{-R}^{-\epsilon} dx \, \frac{(x^2+a^2) e^{i x}}{x (x^2+b^2)} + i \epsilon \int_{-\pi}^0 d\phi e^{i \phi} \frac{(a^2+\epsilon^2 e^{i 2 \phi}) e^{i \epsilon e^{i \phi}}}{\epsilon e^{i \phi} (b^2+\epsilon^2 e^{i 2 \phi})}+\\\int_{\epsilon}^R dx \, \frac{(x^2+a^2) e^{i x}}{x (x^2+b^2)}+i R \int_0^{\pi} d\theta e^{i \theta}\frac{(a^2+R^2 e^{i 2 \theta}) e^{i R e^{i \theta}}}{Re^{i \theta} (b^2+R^2 e^{i 2 \theta})} $$

We take the limit as $R \to \infty$ and $\epsilon \to 0$ and get

$$PV \int_{-\infty}^{\infty} dx \, \frac{(x^2+a^2) e^{i x}}{x (x^2+b^2)} - i \pi \frac{a^2}{b^2}$$

Note that the magnitude of fourth integral vanishes as

$$2 \int_0^{\pi/2} e^{-R \sin{\theta}} \le 2 \int_0^{\pi/2} e^{-2 R \theta/\pi} \le \frac{\pi}{R}$$

as $R \to \infty$. By the residue theorem, the contour integral is equal to $i 2 \pi$ times the residue of the pole at $z=i b$. Therefore

$$PV \int_{-\infty}^{\infty} dx \, \frac{(x^2+a^2) e^{i x}}{x (x^2+b^2)} = i \pi \frac{a^2}{b^2} - i 2 \pi \frac{(a^2-b^2) e^{-b}}{2 b^2}$$

Similarly,

$$PV \int_{-\infty}^{\infty} dx \, \frac{(x^2+a^2) e^{-i x}}{x (x^2+b^2)} = -i \pi \frac{a^2}{b^2} + i 2 \pi \frac{(a^2-b^2) e^{-b}}{2 b^2}$$

Therefore,

$$\int_{-\infty}^{\infty} dx \, \frac{(x^2+a^2) \sin{x}}{x (x^2+b^2)} = \pi \frac{a^2}{b^2} - \pi \frac{(a^2-b^2) e^{-b}}{ b^2}$$

which is equivalent to the stated result.

Ron Gordon
  • 138,521