So far, I know if $p$ is a rational prime, then
$(1)$ if $p\equiv 3\mod4$, then $p$ is prime in $\mathbb{Z}[i]$.
$(2)$ If $p\equiv1\mod4$ then $p=π_1 π_2$ where $π_1 $ and $π_2$ are conjugate, Then $π_1 $ and $π_2$ are primes in $\mathbb{Z}[i]$.
$(3)$ $2=(1+i)(1-i)$, then $(1+i)$and$(1-i)$ are primes in $\mathbb{Z}[i]$.
What's are all the prime elements in Gaussian integers $\mathbb{Z}[i]$? For example, $-3$ are prime in $\mathbb{Z}[i]$, but not in the above $3$ cases.