After reading the fantastic solutions to the integral in the post,
$$\int_0^1 \frac{\ln x}{1 - x^2} \mathrm{d}x=-\frac{\pi^2}8,$$ and found that $$ \int_0^1 \frac{\ln ^2 x}{1-x^2} d x =\frac{7\zeta(3)}{4}. $$
Then I keep on exploring the integral in general and obtain a formula,
$$ \int_0^{1} \frac{\ln ^n x}{\left(1-x^2\right)^2}dx= \frac{(-1)^n n !}{2}\left[\left(1-\frac{1}{2^n}\right)\zeta(n)+\left(1-\frac{1}{2^{n+1}}\right) \zeta(n+1)\right] $$ where $n\ge 2.$
First of all, we use its partner integral $$ I(a)=\int_0^1 \frac{x^a}{\left(1-x^2\right)^2} d x $$ Using the series for $|x|<1,$ $$ \frac{1}{\left(1-x^2\right)^2}=\sum_{k=1}^{\infty} k x^{2 k-2}, $$ we have $$ I(a) =\sum_{k=1}^{\infty} k \int_0^1 x^{2 k-2+a} d x =\sum_{k=1}^{\infty} \frac{k}{2 k-1+a} $$ $$ \begin{aligned} \int_0^1 \frac{\ln ^n x}{\left(1-x^2\right)^2} d x & =\left.\sum_{k=1}^{\infty} \frac{\partial^n}{d a^n}\left(\frac{k}{2 k-1+a}\right)\right|_{a=0} \\ & =(-1)^n n ! \sum_{k=1}^{\infty} \frac{k}{(2 k-1)^{n+1}} \\ & =\frac{(-1)^n n !}{2} \sum_{k=1}^{\infty}\left[\frac{1}{(2 k-1)^n}+\frac{1}{(2 k-1)^{n+1}}\right] \\ & =\boxed{\frac{(-1)^n n !}{2}\left[\left(1-\frac{1}{2^n}\right)\zeta(n)+\left(1-\frac{1}{2^{n+1}}\right) \zeta(n+1)\right]} \end{aligned} $$ For examples, $$ I_2=\frac{3}{4} \zeta(2)+\frac{7}{8} \zeta(3)= \frac{\pi^2}{8} +\frac{7}{8} \zeta(3) $$ $$ I_3=-3\left[\frac{7}{8} \zeta(3)+\frac{15}{16} \zeta(4)\right]=-\frac{21}{8} \zeta(3)-\frac{\pi^2}{32} $$
My question: Is there any other simple method to evaluate $\int_0^{1} \frac{\ln ^n x}{\left(1-x^2\right)^2}dx $?