Being attracted by the exact values of the integrals, $$ \begin{aligned} & \int_0^{\infty} \frac{\ln ^2 x}{\left(1-x^2\right)^2} d x=\frac{\pi^2}{4} \\ & \int_0^{\infty} \frac{\ln ^3 x}{\left(1-x^2\right)^2} d x=-\frac{\pi^4}{16} \\ & \int_0^{\infty} \frac{\ln ^4 x}{\left(1-x^2\right)^2}dx=\frac{\pi^4}{4} \\ & \int_0^{\infty} \frac{\ln ^5 x}{\left(1-x^2\right)^2}dx=-\frac{\pi^6}{8} \\ & \int_0^{\infty} \frac{\ln ^6 x}{\left(1-x^2\right)^2}dx=\frac{3 \pi^6}{4}, \end{aligned} $$ I dare guess that the integral in general $$I_n=\int_0^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2}dx$$ may be expressed in terms of the zeta function of an even integers.
As usual, we split it into two integrals as $$ \int_0^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2} d x=\int_0^1 \frac{\ln ^n x}{\left(1-x^2\right)^2} d x+\int_1^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2} d x $$ $$\because \int_1^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2} d x \stackrel{x\mapsto\frac{1}{x}}{=} (-1)^n \int_0^1 \frac{x^2 \ln ^nx}{\left(1-x^2\right)^2} d x \\= (-1)^n \int_0^1 \frac{\ln ^n x}{\left(1-x^2\right)^2} d x+(-1)^{n+1} \int_0^1 \frac{\ln ^n x}{1-x^2} d x $$
$$ \therefore \int_0^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2} d x=(1+(-1)^n) \int_0^1 \frac{\ln ^n x}{\left(1-x^2\right)^2} d x +(-1)^{n+1} \int_0^1 \frac{\ln ^n x}{1-x^2} d x $$
So when $n$ is odd, $$ \int_0^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2} d x=\int_0^1 \frac{\ln ^n x}{1-x^2} dx= -n !\left(1-\frac{1}{2^{n+1}}\right) \zeta(n+1) $$ where the last answer comes from my post 1.
When $n$ is even, $$ \begin{aligned} \int_0^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2}d x&=2 \int_0^1 \frac{\ln ^n x}{\left(1-x^2\right)^2} d x-\int_0^1 \frac{\ln ^n x}{1-x^2} d x \\ & =n !\left[\left(1-\frac{1}{2^n}\right) \zeta(n)+\left(1-\frac{1}{2^{n+1}}\right) \zeta(n+1)\right]-n !\left(1-\frac{1}{2^{n+1}}\right)\zeta(n+1) \\ & =n !\left(1-\frac{1}{2^n}\right) \zeta(n) \end{aligned} $$
where the second last line comes from my post 2 and post 1.
We can now conclude that $$ \int_0^{\infty} \frac{\ln ^n x}{\left(1-x^2\right)^2} d x=\left\{\begin{array}{l} -n !\left(1-\frac{1}{2^{n+1}}\right) \zeta(n+1) \quad \text { if }n \textrm{ is odd greater than }1. \\ n !\left(1-\frac{1}{2^n}\right) \zeta(n) \qquad\qquad \text { if } n \textrm{ is even. } \end{array}\right. $$ can be expressed in terms of the zeta function of even integer.
Your comments and alternative solutions are highly appreciated.