More Examples:
Consider
$$
f(z)=\left[\operatorname{nc}\left(z-\frac{K^\prime}{2},k^\prime\right)-\operatorname{nc}\left(z+\frac{K^\prime}{2},k^\prime\right)\right]
\left(\frac{\mathrm{d}^{2n}}{\mathrm{d}y^{2n}}
\frac{\cosh(y)}{\cosh(2y)} \right)\Big|_{y\rightarrow\frac{\pi z}{2K} },
$$
we have
$$
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{1}{\sqrt{k}(1-k^2)^{3/4}K(k)}\text{d}k
=2^{2s+1}\pi^{-s}\Gamma(s)L_8(s)L_{-8}(s),\\
\color{green}{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{(1-2k^2+2k\sqrt{1-k^2})}{\sqrt{k}(1-k^2)^{3/4}}K(k)\text{d}k
=2^{2s+1}\pi^{-s}\Gamma(s)L_8(s)L_{-8}(s-2).}
$$
Consider
$$
f(z)=\left[\operatorname{nc}\left(z-\frac{K^\prime}{2},k^\prime\right)+\operatorname{nc}\left(z+\frac{K^\prime}{2},k^\prime\right)\right]
\left(\frac{\mathrm{d}^{2n}}{\mathrm{d}y^{2n}}
\frac{\sinh(y)}{\cosh(2y)} \right)\Big|_{y\rightarrow\frac{\pi z}{2K} },
$$
we have
$$
\color{green}{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{(1-2k^2-2k\sqrt{1-k^2})}{\sqrt{k}(1-k^2)^{3/4}}K(k)\text{d}k
=2^{2s+1}\pi^{-s}\Gamma(s)L_{-8}(s)L_{8}(s-2).}
$$
From a combination of the green integrals, we conclude
\begin{aligned}
&\color{purple}{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{(1-2k^2)K(k)}{\sqrt{k}(1-k^2)^{3/4}}\text{d}k
=2^{2s}\pi^{-s}\Gamma(s)[L_8(s)L_{-8}(s-2)+L_{-8}(s)L_{8}(s-2)]},\\
&\color{purple}{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\sqrt{k}K(k)}{(1-k^2)^{1/4}}\text{d}k
=2^{2s-1}\pi^{-s}\Gamma(s)[L_8(s)L_{-8}(s-2)-L_{-8}(s)L_{8}(s-2)]}.
\end{aligned}
Various Theta Products And Relative Lattice Sums
They are listed here. I use some shorten notations:$\vartheta_2=\vartheta_2(q)$ and the like.
$\vartheta_n(q^m)(m\ne1)$ won't be omitted. The source function $f(x)$ and corresponding lattice sum are related by $\int_{0}^{\infty}x^{s-1}f(x)\text{d}x
=\frac{\Gamma(s)}{\pi^s} L_f(s)$. The third column should be regarded as integrals after direct substitution $x=K^\prime/K$(they may not convergent for specific $s$). So regularization is somewhat significant. We also have $\text{Integral}=\int_{0}^{\infty}x^{s-1}f(x)\text{d}x$.
$$\begin{array}{|l|l|l|}\hline
\vartheta_2^4& 16\lambda(s)\lambda(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{k}{1-k^2}\text{d}k \\ \hline
\vartheta_3^4& 8(1+2^{1-s})\zeta(s)\lambda(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k(1-k^2)}\text{d}k\\ \hline
\vartheta_4^4& 8(2^{2-s}-1)\zeta(s)\lambda(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k}\text{d}k \\ \hline
\vartheta_2^2\vartheta_3^2& 2^{s+2}\lambda(s)\lambda(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{1-k^2}\text{d}k\\ \hline
\vartheta_2\vartheta_4^3& 2^{2s}[L_{-8}(s)L_{-8}(s-1)+L_8(s)L_8(s-1)]
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{\sqrt{k}(1-k^2)^{1/4}}\text{d}k \\ \hline
\vartheta_2^2\vartheta_4^2& 2^{s+2}\beta(s)\beta(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{\sqrt{1-k^2}}\text{d}k \\ \hline
\vartheta_2^3\vartheta_4& 2^{2s}[L_{-8}(s)L_{-8}(s-1)-L_8(s)L_8(s-1)]
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{\sqrt{k}}{(1-k^2)^{3/4}}\text{d}k \\ \hline
\vartheta_2\vartheta_2(q^2)\vartheta_4^2
&2^{2s}[\beta(s)L_{-8}(s-1)-\lambda(s)L_8(s-1)]
&\left ( \frac{2}{\pi} \right )
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\sqrt{(1-k^\prime)/2}}{\sqrt{k(1-k^2)} }\text{d}k\\ \hline
\vartheta_2\vartheta_3(q^2)\vartheta_4^2
&2^{2s}[\beta(s)L_{-8}(s-1)+\lambda(s)L_8(s-1)]
&\left ( \frac{2}{\pi} \right )
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\sqrt{(1+k^\prime)/2}}{\sqrt{k(1-k^2)} }\text{d}k\\ \hline
\vartheta_2(q^2)\vartheta_3^2\vartheta_4& 2^{s+1}\beta(s)L_{-8}(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{\sqrt{(1-k^\prime)/2}}{k(1-k^2)^{3/4}}\text{d}k \\ \hline
\vartheta_2(q^2)\vartheta_3\vartheta_4^2& 2^{s+1}\lambda(s)L_{8}(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{\sqrt{(1-k^\prime)/2}}{k\sqrt{1-k^2}}\text{d}k \\ \hline
\vartheta_3^2\vartheta_4^2& -2^{3-s}(1-2^{2-s})\zeta(s)\lambda(s-1)
&\left(\frac{2}{\pi}\right) \int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k\sqrt{1-k^2}}\text{d}k \\ \hline
\vartheta_2^6& 2^{s+2}[\beta(s)\lambda(s-2)-\lambda(s)\beta(s-2)]
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{k^2}{1-k^2}K\text{d}k \\ \hline
\vartheta_3^6& 16\beta(s)\zeta(s-2)-4\zeta(s)\beta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k(1-k^2)}K\text{d}k\\ \hline
\vartheta_4^6& 4\eta(s)\beta(s-2)-16\beta(s)\eta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{\sqrt{1-k^2}}{k}K\text{d}k\\ \hline
\vartheta_2^2\vartheta_3^4& 2^{s+2}\beta(s)\lambda(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{1-k^2}K\text{d}k \\ \hline
\vartheta_2^3\vartheta_3^3&
2^{2s-1}[\beta(s)\lambda(s-2)-\lambda(s)\beta(s-2)]
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{\sqrt{k}}{1-k^2}K\text{d}k \\ \hline
\vartheta_2^4\vartheta_3^2&
16\beta(s)\zeta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{k}{1-k^2}K\text{d}k \\ \hline
\vartheta_2\vartheta_4(\vartheta_3^4-2\vartheta_2^4)& 2^{2s}[L_8(s)L_{-8}(s-2)+L_{-8}(s)L_8(s-2)]
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1-2k^2}{\sqrt{k}(1-k^2)^{3/4}}K\text{d}k \\ \hline
\vartheta_2^2\vartheta_4^4& 2^{s+2}\lambda(s)\beta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}K\text{d}k\\ \hline
\vartheta_2^3\vartheta_4^3& 2^{2s-1}[L_8(s)L_{-8}(s-2)-L_{-8}(s)L_8(s-2)]
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{\sqrt{k}}{(1-k^2)^{1/4}}K\text{d}k \\ \hline
\vartheta_2^4\vartheta_4^2&
16\beta(s)\eta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{k}{\sqrt{1-k^2}}K\text{d}k \\ \hline
\vartheta_3^2\vartheta_4^4&
-4\zeta(s)\beta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k}K\text{d}k \\ \hline
\vartheta_3^3\vartheta_4^3& 2^{2-s}[\eta(s)\beta(s-2)-4\beta(s)\eta(s-2)]
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k(1-k^2)^{1/4}}K\text{d}k\\ \hline
\vartheta_3^4\vartheta_4^2&
4\eta(s)\beta(s-2)
&\left(\frac{2}{\pi}\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k\sqrt{1-k^2}}K\text{d}k \\ \hline
\vartheta_2^8& 2^{8-s}\lambda(s)\zeta(s-3)
& \left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{k^3}{1-k^2}K^2\text{d}k\\ \hline
\vartheta_3^8& 32\lambda(s)\lambda(s-3)-16\zeta(s)\eta(s-3)
&\left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k(1-k^2)}K^2\text{d}k \\ \hline
\vartheta_4^8& -16\zeta(s)\eta(s-3)
&\left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1-k^2}{k}K^2\text{d}k \\ \hline
\vartheta_2^2\vartheta_3^2(\vartheta_2^4+\vartheta_3^4)& 2^{s+2}\lambda(s)\lambda(s-3)
&\left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1+k^2}{1-k^2}K^2\text{d}k \\ \hline
\vartheta_2^4\vartheta_3^4& 16\lambda(s)\zeta(s-3)
&\left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{k}{1-k^2}K^2\text{d}k \\ \hline
\vartheta_2^4\vartheta_4^4&
16\lambda(s)\eta(s-3)
&\left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
kK^2\text{d}k \\ \hline
\vartheta_3^4\vartheta_4^4&
-2^{4-s}\zeta(s)\eta(s-3)
&\left(\frac{2}{\pi}\right)^3\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k}K^2\text{d}k \\ \hline
\vartheta_2^{10}
& \frac{2^{s+2}}5\beta(s)\lambda(s-4)+\frac{2^{s+2}}5\lambda(s)\beta(s-4)-\frac{2^{6-s}}{5}L_{1/2,1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k^4 }{1-k^2}K^3\text{d}k
\\ \hline
\vartheta_3^{10}& \frac45\zeta(s)\beta(s-4)+\frac{64}5\beta(s)\zeta(s-4)+\frac25L_{1,1}(s)
&\left(\frac{2}{\pi}\right)^4\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}
\frac{1}{k(1-k^2)}K^3\text{d}k \\ \hline
\vartheta_4^{10}
& -\frac45\eta(s)\beta(s-4)-\frac{64}5\beta(s)\eta(s-4)-\frac{2^{s+1}}{5}L_{1,-1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\left ( 1-k^2 \right )^{3/2} }{k}K^3\text{d}k
\\ \hline
\vartheta_2\vartheta_3\vartheta_4^8
&16L_{1/2,1}(s):=16{\sum_{(m,n)\in\mathbb{Z}^2}^{}}\frac{(m+1/2-ni)^4}{
[(m+1/2)^2+n^2]^s}
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{1-k^2}{\sqrt{k}}K^3\text{d}k\\ \hline
\vartheta_2^2\vartheta_3^4\vartheta_4^4
&2^{5-s}L_{1/2,1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}K^3\text{d}k\\ \hline
\vartheta_2^2\vartheta_3^8
&\frac{2^{s+2}}5\beta(s)\lambda(s-4)+\frac{2^{7-s}}5L_{1/2,1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}\frac{1}{1-k^2}K^3\text{d}k\\ \hline
\vartheta_2^2\vartheta_4^8
&\frac{2^{s+2}}5\lambda(s)\beta(s-4)+\frac{2^{7-s}}5L_{1/2,1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}(1-k^2)K^3\text{d}k\\ \hline
\vartheta_2^4\vartheta_4^6
&\frac{64}{5}\beta(s)\eta(s-4)+\frac{2^{s}}{5}L_{1,-1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
k\sqrt{1-k^2} K^3\text{d}k\\ \hline
\vartheta_2^4\vartheta_3^2\vartheta_4^4& L_{1,1}(s):={\sum_{(m,n)\in\mathbb{Z}^2}}^\prime\frac{(m-ni)^4}{(m^2+n^2)^s}
&\left(\frac{2}{\pi}\right)^4\int_{0}^{1} \left ( \frac{K^\prime}{K}\right )^{s-1}kK^3\text{d}k \\ \hline
\vartheta_2^4\vartheta_3^4\vartheta_4^2
& 2^sL_{1,-1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k}{\sqrt{1-k^2}}K^3\text{d}k\\ \hline
\vartheta_2^{5}\vartheta_3^5
& \frac{2^{2s-3}}5\beta(s)\lambda(s-4)+\frac{2^{2s-3}}5\lambda(s)\beta(s-4)-\frac{2}{5}L_{1/2,1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k^{3/2} }{1-k^2}K^3\text{d}k\\ \hline
\vartheta_2^6\vartheta_3^4
&\frac{2^{s+2}}5\beta(s)\lambda(s-4)-\frac{2^{5-s}}5L_{1/2,1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k^2}{1-k^2}K^3\text{d}k\\ \hline
\vartheta_2^6\vartheta_4^4
&-\frac{2^{s+2}}5\lambda(s)\beta(s-4)+\frac{2^{5-s}}{5}L_{1/2,1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
k^2K^3\text{d}k\\ \hline
\vartheta_2^8\vartheta_3^2
&\frac{64}5\beta(s)\zeta(s-4)-\frac{4}5L_{1,1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k^3}{1-k^2}K^3\text{d}k\\ \hline
\vartheta_2^8\vartheta_4^2
&-\frac{64}{5}\beta(s)\eta(s-4)+\frac{2^{s+2}}{5}L_{1,-1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k^3}{\sqrt{1-k^2} }K^3\text{d}k\\ \hline
\vartheta_2^8\vartheta_3\vartheta_4
&16L_{1,-1}(s):=16{\sum_{(m,n)\in\mathbb{Z}^2}^{}}^\prime(-1)^n\frac{(m-ni)^4}{
(m^2+n^2)^s}
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{k^3}{\left ( 1-k^2 \right )^{3/4} }K^3\text{d}k\\ \hline
\vartheta_3^2\vartheta_4^8
&\frac45\zeta(s)\beta(s-4)-\frac{4}5L_{1,1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{1-k^2}{k}K^3\text{d}k\\ \hline
\vartheta_3^4\vartheta_4^6
&-\frac45\eta(s)\beta(s-4)-\frac{2^{s}}5L_{1,-1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\sqrt{1-k^2} }{k}K^3\text{d}k\\ \hline
\vartheta_3^5\vartheta_4^5
& -\frac{2^{2-s}}5\eta(s)\beta(s-4)-\frac{2^{6-s}}5\beta(s)\eta(s-4)-\frac{2}{5}L_{1,-1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{\left ( 1-k^2 \right )^{1/4} }{k}K^3\text{d}k\\ \hline
\vartheta_3^6\vartheta_4^4
&\frac45\zeta(s)\beta(s-4)+\frac{1}5L_{1,1}(s)
& \left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{1}{k}K^3\text{d}k\\ \hline
\vartheta_3^8\vartheta_4^2
&-\frac45\eta(s)\beta(s-4)+\frac{2^{s+2}}5L_{1,-1}(s)
&\left ( \frac{2}{\pi} \right )^4
\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1}
\frac{1}{k\sqrt{1-k^2}}K^3\text{d}k\\ \hline
\end{array}$$