8

With the interests of $$ I(a,b)=\int_{0}^{1}k^a(1-k^2)^bK(k)\text{d}k, $$ where $K(k)$ represents the complete elliptic integral with modulus $k$ and $K^\prime(k)$ its complementary, many $I(a,b)$ for rational $a,b$ are evaluated. The methodologies are as follows:

$\textbf{1.Hypergeometric Representations}$
Expanding $K(k)$, we obtain(conditions omitted) $$I(a,b)=\frac{\pi}{4} \frac{\Gamma(b+1)\Gamma\left ( \frac{a+1}{2} \right ) }{ \Gamma\left ( \frac{a+3}{2}+b \right ) } {}_3F_2\left ( \frac{1}{2},\frac12,\frac{a+1}{2};\frac{a+3}{2}+b,1;1 \right ).$$ Note that $I(a,b+1)=I(a,b)-I(a+2,b)$.
Apparently, supposing $\frac{a+3}{2}+b=\frac12$ i.e. $b=-1-\frac{a}{2}$, it simplifies to $$ I\left ( a,-1-\frac{a}{2} \right ) =\frac{\cos\left ( \frac{\pi a}{2} \right ) }{4\pi} \Gamma\left ( -\frac{a}{2} \right )^2\Gamma\left ( \frac{a+1}{2} \right )^2. $$ Also, $$ I(1,b)=\frac{\pi}{4} \frac{\Gamma\left ( b+1 \right )^2 }{ \Gamma\left ( b+\frac32 \right )^2}. $$ Some hypergeometric transformations are applicable to the given ${}_3F_2$. For instances, from here we have $$I(s,0)+I(-s-1,0) =-\frac{\pi}{4}\tan\left ( \frac{\pi s}{2} \right ) \frac{\Gamma\left ( -\frac{s}{2} \right )^2 }{ \Gamma\left ( \frac{1-s}{2} \right )^2 }.$$ (add on May 20th, 23) Applying Dixon's ${}_3F_2$ Theorem, that allowed us to proceed further. Explicitly, as $a+b=-1/2$, $$ I(a,b)=\frac{\Gamma\left ( \frac14 \right )^2}{8\sqrt{2\pi} } \frac{\Gamma\left ( \frac{1+a}{2} \right ) \Gamma\left ( \frac12-a \right ) \Gamma\left ( \frac14-\frac{a}{2} \right ) }{\Gamma\left ( \frac34-\frac{a}{2} \right ) \Gamma\left ( \frac{1-a}{2} \right ) }. $$ If $a-2b=1,\Re(a)>0$, $$ I(a,b)=\frac{\Gamma\left ( \frac14 \right )^2}{8\sqrt{\pi} } \frac{\Gamma\left ( 1+\frac{a}{2} \right )\Gamma\left ( \frac{1+a}{2} \right )^3}{ \Gamma(1+a)\Gamma\left ( \frac{3}{4}+\frac{a}{2} \right )^2 }, $$ which gives the evaluation $$ I\left ( -\frac{5}{6},-\frac{11}{12} \right ) =\frac{3^{3/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac14 \right )^4 }{4\pi\cdot2^{2/3}}. $$

$\textbf{2.Contour Integration}$
We have $$ I(a,b)+\cos(b\pi)I(-a-2b-1,b) +\sin(b\pi)I\left ( 2b+1,-\frac{a}{2}-b-1 \right ) +\sin\left ( \frac{\pi a}{2} \right )I\left ( a,-\frac{a}{2}-b-1 \right )=0 ,$$ and $$ \cos(b\pi)I\left ( 2b+1,-\frac{a}{2}-b-1 \right ) =\cos\left ( \frac{\pi a}{2} \right ) I\left ( a,-\frac{a}{2}-b-1 \right )+\sin\left ( \pi b \right ) I(-a-2b-1,b). $$ Setting $a=-5/6,b=-11/12$, producing \begin{aligned} I\left ( \frac{5}{3},-\frac{11}{12} \right ) & = \sqrt{3}\left ( \sqrt{3}+1 \right ) I\left ( -\frac56,\frac13 \right )\\ & =\frac{3^{1/4}\left ( \sqrt{3}+1 \right )\Gamma\left ( \frac14 \right )^4 }{4\pi\cdot 2^{1/6}}, \end{aligned} where the second equality is owing to the former identity for $a+b=-1/2$.
Another less obvious one is, $$ \int_{0}^{1} \frac{k^{2/3}K(k)}{\left ( 1-k^2 \right )^{2/3} } \text{d} k=\frac{3^{3/4}\Gamma\left ( \frac14 \right )^4 }{24\pi\cdot2^{1/6} }. $$

$\textbf{3.Modular Forms(1)}$
The basic idea is to construct a modular form expressed by Jacobi $\vartheta$ functions and compute its $L$-value. For example, setting $q=\exp(-\pi K^\prime(k)/K(k))$ $$ f(q)=\sum_{m,n\in\mathbb{Z}} (-1)^m\left [ 3\left ( m+\frac16 \right )^2-n^2 \right ] q^{3\left ( m+\frac16 \right )^2+n^2 }.$$ We have $$f(q)=\frac{2^{2/3}k^{1/6}(1-k^2)^{1/12}(1-2k^2)}{ 3\pi^3}K(k)^3.$$ And $$\int_{0}^{\infty}xf(q)\text{d}x =\frac{1}{\pi^2} \sum_{m,n\in\mathbb{Z}} \frac{(-1)^m}{\left ( \sqrt{3}\left ( m+\frac16 \right )+ni \right )^2 }.$$ Therefore it's sufficient to show that $$\int_{0}^{1} \frac{(2k^2-1)K(k)}{k^{5/6}(1-k^2)^{11/12}}\text{d}k =\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{ 16\pi^2\cdot2^{1/3} },$$ and therefore, $$ I\left ( \frac{7}{6},-\frac{11}{12} \right ) =\frac{3^{3/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac14 \right )^4 }{8\pi\cdot2^{2/3}} +\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{ 32\pi^2\cdot2^{1/3} }. $$ Which also gives $$ I\left ( -\frac{5}{6},\frac{1}{12} \right ) =\frac{3^{3/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac14 \right )^4 }{8\pi\cdot2^{2/3}} -\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{ 32\pi^2\cdot2^{1/3} }, $$ with $$ \int_{0}^{1}\left ( 1-k^{12} \right )^{\frac{1}{12}} K\left ( k^6 \right )\text{d}k =\frac{3^{3/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac14 \right )^4 }{48\pi\cdot2^{2/3}} -\frac{3^{3/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{64\pi^2\cdot2^{1/3} }. $$ However, this usually only gives linear equation among two $I(a,b)$. Apart from $$I\left(-\frac34,0\right)=\frac{\left ( 3+\sqrt{2} \right ) \Gamma\left ( \frac18 \right )^2\Gamma\left ( \frac38 \right )^2 }{ 48\pi\sqrt{2} },$$ $$ I\left(-\frac14,0\right)=\frac{\left ( 3-\sqrt{2} \right ) \Gamma\left ( \frac18 \right )^2\Gamma\left ( \frac38 \right )^2 }{ 48\pi\sqrt{2} },$$ they can be: $$ 2I\left ( -\frac13,-\frac{11}{12} \right ) -I\left ( \frac53,-\frac{11}{12} \right ) =\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{ 8\cdot2^{5/6}\pi^2 }, $$ $$ 4I\left ( -\frac23,-\frac{17}{24} \right ) +I\left ( \frac43,-\frac{17}{24} \right ) =\frac{\left ( \sqrt{2}-1 \right )^{\frac32} \left ( \sqrt{3} +\sqrt{2} \right )^{\frac32}\cdot3^{\frac14} \left ( 1+\left ( 2-\sqrt{3} \right ) \left ( \sqrt{3} -\sqrt{2} \right ) \right )^2 }{8\cdot2^{\frac13}\pi} \Gamma\left ( \frac{1}{24} \right ) \Gamma\left ( \frac{5}{24} \right ) \Gamma\left ( \frac{7}{24} \right ) \Gamma\left ( \frac{11}{24} \right ). $$ Gathering all information we know about $I(a,b)$, we obtain two additional values: \begin{aligned} &I\left ( -\frac13,-\frac{11}{12} \right ) =\frac{3^{1/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac14 \right )^4 }{8\pi\cdot 2^{1/6}} +\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{ 16\cdot2^{5/6}\pi^2 },\\ &I\left ( -\frac13,\frac{1}{12} \right ) =-\frac{3^{1/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac14 \right )^4 }{8\pi\cdot 2^{1/6}} +\frac{3^{7/4}\left ( 1+\sqrt{3} \right )\Gamma\left ( \frac13 \right )^6 }{ 16\cdot2^{5/6}\pi^2 }. \end{aligned}

$\textbf{4.Modular Forms(2)}$
It's also possible to prove that \begin{aligned} &\color{purple}{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1} \frac{(1-2k^2)K(k)}{\sqrt{k}(1-k^2)^{3/4}}\text{d}k =2^{2s}\pi^{-s}\Gamma(s)[L_8(s)L_{-8}(s-2)+L_{-8}(s)L_{8}(s-2)]},\\ &\color{purple}{\left(\frac2\pi\right)^2\int_{0}^{1} \left ( \frac{K^\prime}{K} \right )^{s-1} \frac{\sqrt{k}K(k)}{(1-k^2)^{1/4}}\text{d}k =2^{2s-1}\pi^{-s}\Gamma(s)[L_8(s)L_{-8}(s-2)-L_{-8}(s)L_{8}(s-2)]}. \end{aligned} Also note that $a=-\frac12,b=-\frac34=-1-\frac{a}{2}$, we derive \begin{aligned} &I\left ( \frac32,-\frac34 \right ) =\frac{\pi^2}{4\sqrt{2} }+\frac{\Gamma\left ( \frac14 \right )^4 }{8\pi\sqrt{2} },\\ &I\left ( \frac12,-\frac14 \right ) =\frac{\pi^2}{4\sqrt{2} }. \end{aligned}

$\textbf{5.Fourier-Legendre Expansions}$
Similarly to here. But most results aren't newly-created.


The questions come here:

  1. Whether we can find more closed-forms for single $I(a,b)$?
  2. Can we come up with more ways to cope with $I(a,b)$?

Remark: The remained question is $I\left(\frac34,-\frac38\right)$, which seems to be unable to prove in ways listed above.

2 Answers2

1

A new one: $$ \int_{0}^{1} \sqrt{k} K(k)\text{d}k =2-\frac{\Gamma\left ( \frac34 \right )^4 }{\pi}. $$ Proof. We have $$ \int_0^1k^sK(k)\text{d}k +\int_{0}^{1}k^{-s-1}K(k)\text{d}k =-\frac{\pi}{4}\tan\left ( \frac{\pi s}{2} \right ) \frac{\Gamma\left (- \frac{s}{2} \right )^2 }{\Gamma\left ( \frac{1-s}{2} \right )^2 }, $$ $$ (n+1)^2\int_{0}^{1}k^{n+1}K(k)\text{d}k -n^2\int_{0}^{1}k^{n-1}K(k) \text{d}k=1. $$ Substituting $s=1/2,n=-1/2$ respectively gives two equations. Hence the result.$\square$


The following results hold: \begin{aligned} &I\left ( s-1,-\frac{1+s}{2} \right ) =\sin\left ( \frac{\pi s}{2} \right ) \frac{\Gamma\left ( \frac{s}2 \right )^2\Gamma\left ( \frac{1-s}{2} \right )^2 }{4\pi},\\ &I\left ( s-1,\frac12-s \right ) =2^{-s-2}\sin\left ( \frac{\pi s}{2} \right ) \Gamma\left ( \frac{s}2 \right )^2 \frac{\Gamma\left ( \frac34-\frac{s}2 \right )^2 }{\Gamma\left ( \frac34 \right )^2},\\ &I\left ( s-1,-\frac12-s \right ) =2^{-s-3}\sin\left ( \frac{\pi s}{2} \right ) \Gamma\left ( \frac{s}{2} \right )^2 \left ( \frac{\Gamma\left ( \frac14-\frac{s}2 \right )^2 }{\Gamma\left ( \frac14 \right )^2} +\frac{\Gamma\left ( \frac34-\frac{s}2 \right )^2 }{\Gamma\left ( \frac34 \right )^2} \right ),\\ &I\left ( s+1,-\frac12-s \right ) =2^{-s-3}\sin\left ( \frac{\pi s}{2} \right ) \Gamma\left ( \frac{s}{2} \right )^2 \left ( \frac{\Gamma\left ( \frac14-\frac{s}2 \right )^2 }{\Gamma\left ( \frac14 \right )^2} -\frac{\Gamma\left ( \frac34-\frac{s}2 \right )^2 }{\Gamma\left ( \frac34 \right )^2} \right ),\\ &I\left ( -2s,\frac{s}{2} \right ) =2^{-s-5/2}\Gamma\left ( \frac{s}{2} \right )^2 \left ( \sin\left ( \frac{\pi}{4}-\frac{\pi s}{2} \right ) \frac{\Gamma\left ( \frac14-\frac{s}2 \right )^2 }{\Gamma\left ( \frac14 \right )^2} -\sin\left ( \frac{\pi}{4}+\frac{\pi s}{2} \right ) \frac{\Gamma\left ( \frac34-\frac{s}2 \right )^2 }{\Gamma\left ( \frac34 \right )^2} \right),\\ &I\left ( -2s-2,\frac{s}{2} \right ) =-2^{-s-7/2}\sin\left ( \frac{\pi}{4}+\frac{\pi s}2 \right ) \frac{\Gamma\left ( -\frac14-\frac{s}2 \right )^2\Gamma\left (1+\frac{s}2 \right )^2 }{\Gamma\left ( \frac34 \right )^2 },\\ &I\left ( -2s-2,\frac{s}{2}+1 \right ) =2^{-s-5/2}\Gamma\left ( \frac{s}{2} \right )^2 \left ( \frac{2s^2+4s+1}{(2s+1)^2} \sin\left ( \frac{\pi}{4}+\frac{\pi s}{2} \right ) \frac{\Gamma\left ( \frac34-\frac{s}2 \right )^2 }{\Gamma\left ( \frac34 \right )^2} -\sin\left ( \frac{\pi}{4}-\frac{\pi s}{2} \right ) \frac{\Gamma\left ( \frac14-\frac{s}2 \right )^2 }{\Gamma\left ( \frac14 \right )^2} \right). \end{aligned} For instance, $$\int_{0}^{1}x^{2/3}(1-x^2)^{5/6}K(x)\text{d}x =\frac{27\cdot3^{1/4}\left ( 12\sqrt{3}-13 \right )\Gamma\left(\frac23\right)^6 }{196\pi^2\sqrt{2} }.$$

0

Others:

  1. For $0<\Re(s)<1$, $$\int_{0}^{1} x^{s-1}\left(1-x^2\right)^{-s}\left(1+x^2\right)K(x)^2\text{d}x =2^{-s}\sin\left ( \frac{\pi s}{2} \right )^2 \frac{\Gamma\left ( \frac{s}2 \right )^3 \Gamma\left ( \frac{1-s}{2} \right )^3 }{8\pi^{3/2}}.$$
  2. For $-1<\Re(s)<1$, $$ \int_{0}^{1} x^s\left ( 1-x^2 \right ) ^{-\frac{s+1}{2} }K(x)K^\prime(x)\text{d}x =\frac{\pi^2}{8\sin\left (\frac{\pi s}2 \right ) } \left ( \mathscr{G}(s)-\mathscr{G}(-s) \right ), $$ where $$\mathscr{G}(s)=\frac{\Gamma\left ( \frac{1-s}{2} \right )^2}{ \Gamma\left (\frac{2-s}{2} \right )^2 } \,_4F_3\left ( \frac12,\frac12,\frac{1-s}{2},\frac{1-s}{2}; 1,1-\frac{s}{2},1-\frac{s}{2} ;1 \right ).$$