We know that
$\Gamma \left( 1+z \right)\Gamma \left( 1-z \right)=\frac{\pi z}{\sin \pi z}$
$\arctan \theta =\frac{i}{2}\ln \left( \frac{i+\theta }{i-\theta } \right)$
$$S=\sum\limits_{k=1}^{+\infty }{\arctan \frac{1}{1+k^{2}}}=\underset{n\to +\infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\arctan \frac{1}{1+k^{2}}}=\underset{n\to +\infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{i}{2}\ln \left( \frac{i+\frac{1}{1+k^{2}}}{i-\frac{1}{1+k^{2}}} \right)}$$
$$=\frac{i}{2}\underset{n\to +\infty }{\mathop{\lim }}\,\ln \prod\limits_{k=1}^{n}{\left( \frac{i+\frac{1}{1+k^{2}}}{i-\frac{1}{1+k^{2}}} \right)}=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\prod\limits_{k=1}^{n}{\left( \frac{i+\frac{1}{1+k^{2}}}{i-\frac{1}{1+k^{2}}} \right)} \right)$$
$$=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\prod\limits_{k=1}^{n}{\left( \frac{i\left( 1+k^{2} \right)+1}{i\left( 1+k^{2} \right)-1} \right)} \right)=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\prod\limits_{k=1}^{n}{\left( \frac{1+k^{2}-i}{1+k^{2}+i} \right)} \right)$$
$$=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\prod\limits_{k=1}^{n}{\left( \frac{k^{2}+1-i}{k^{2}+1+i} \right)} \right)=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\prod\limits_{k=0}^{n}{\left( \frac{\left( k+1 \right)^{2}+1-i}{\left( k+1 \right)^{2}+1+i} \right)} \right)$$
Note that $$\left( k+1 \right)^{2}+1\pm i=\left( k+1+i\sqrt{1\pm i} \right)\left( k+1-i\sqrt{1\pm i} \right)$$
$$=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\frac{\prod\limits_{k=0}^{n}{\left( k+1+i\sqrt{1-i} \right)}}{\prod\limits_{k=0}^{n}{\left( k+1+i\sqrt{1+i} \right)}}\cdot \frac{\prod\limits_{k=0}^{n}{\left( k+1-i\sqrt{1-i} \right)}}{\prod\limits_{k=0}^{n}{\left( k+1-i\sqrt{1+i} \right)}} \right)$$
$$=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\frac{\frac{1}{n!n^{1+i\sqrt{1-i}}}\prod\limits_{k=0}^{n}{\left( k+1+i\sqrt{1-i} \right)}}{\frac{1}{n!n^{1+i\sqrt{1+i}}}\prod\limits_{k=0}^{n}{\left( k+1+i\sqrt{1+i} \right)}}\cdot \frac{\frac{1}{n!n^{1-i\sqrt{1-i}}}\prod\limits_{k=0}^{n}{\left( k+1-i\sqrt{1-i} \right)}}{\frac{1}{n!n^{1-i\sqrt{1+i}}}\prod\limits_{k=0}^{n}{\left( k+1-i\sqrt{1+i} \right)}} \right)$$
$$=\frac{i}{2}\ln \left( \underset{n\to +\infty }{\mathop{\lim }}\,\frac{\prod\limits_{k=0}^{n}{\left( k+1+i\sqrt{1-i} \right)}}{n!n^{1+i\sqrt{1-i}}}\cdot \frac{n!n^{1+i\sqrt{1+i}}}{\prod\limits_{k=0}^{n}{\left( k+1+i\sqrt{1+i} \right)}}\cdot \frac{\prod\limits_{k=0}^{n}{\left( k+1-i\sqrt{1-i} \right)}}{n!n^{1-i\sqrt{1-i}}}\cdot \frac{n!n^{1-i\sqrt{1+i}}}{\prod\limits_{k=0}^{n}{\left( k+1-i\sqrt{1+i} \right)}} \right)$$
$$=\frac{i}{2}\ln \left( \frac{\Gamma \left( 1+i\sqrt{1+i} \right)\cdot \Gamma \left( 1-i\sqrt{1+i} \right)}{\Gamma \left( 1+i\sqrt{1-i} \right)\cdot \Gamma \left( 1+i\sqrt{1-i} \right)} \right)$$
But $$i\sqrt{1\pm i}=i\sqrt{\sqrt{2}\left( \cos \frac{\pi }{4}\pm i\sin \frac{\pi }{4} \right)}=\sqrt[4]{2}i\exp \pm \frac{\pi }{8}=\sqrt[4]{2}i\left( \cos \pm \frac{\pi }{8}+i\sin \pm \frac{\pi }{8} \right)$$
$$=\sqrt[4]{2}i\left( \cos \frac{\pi }{8}\pm i\sin \frac{\pi }{8} \right)=\sqrt[4]{2}\left( \mp \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right)$$
Then
$$=\frac{i}{2}\ln \left( \frac{\Gamma \left( 1+\sqrt[4]{2}\left( -\sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)\cdot \Gamma \left( 1-\sqrt[4]{2}\left( -\sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)}{\Gamma \left( 1+\sqrt[4]{2}\left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)\cdot \Gamma \left( 1-\sqrt[4]{2}\left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)} \right)$$
$$=\frac{i}{2}\ln \left( \frac{\pi \left( -\sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8} \right)}{\sin \left( \pi \left( -\sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8} \right) \right)}\cdot \frac{\sin \left( \pi \left( \sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8} \right) \right)}{\pi \left( \sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8} \right)} \right)$$
$$=\frac{i}{2}\ln \left( \frac{-\sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8}}{\sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8}}\cdot \frac{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)}{\sin \left( \sqrt[4]{2}\pi \left( -\sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)} \right)$$
Note that
$$\frac{-\sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8}}{\sqrt[4]{2}\sin \frac{\pi }{8}+\sqrt[4]{2}i\cos \frac{\pi }{8}}=\frac{-\sin \frac{\pi }{8}+i\cos \frac{\pi }{8}}{\sin \frac{\pi }{8}+i\cos \frac{\pi }{8}}=-\frac{\sin \frac{\pi }{8}-i\cos \frac{\pi }{8}}{\sin \frac{\pi }{8}+i\cos \frac{\pi }{8}}\cdot \frac{\sin \frac{\pi }{8}-i\cos \frac{\pi }{8}}{\sin \frac{\pi }{8}-i\cos \frac{\pi }{8}}$$
$$=-\left( \sin ^{2}\frac{\pi }{8}-\cos ^{2}\frac{\pi }{8}-2i\sin \frac{\pi }{8}\cos \frac{\pi }{8} \right)=\cos \frac{\pi }{4}+i\sin \frac{\pi }{4}=\exp \left( \frac{\pi i}{4} \right)$$
Then
$$=\frac{i}{2}\ln \left( \exp \left( \frac{\pi i}{4} \right)\cdot \frac{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)}{\sin \left( \sqrt[4]{2}\pi \left( -\sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)} \right)$$
$$=\frac{i}{2}\ln \left( -\exp \left( \frac{\pi i}{4} \right)\cdot \frac{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)}{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}-i\cos \frac{\pi }{8} \right) \right)} \right)$$
On the other hand, Working expression
$$\frac{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)}{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}-i\cos \frac{\pi }{8} \right) \right)}=\frac{e^{\sqrt[4]{2}\pi i\left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right)}-e^{-\sqrt[4]{2}\pi i\left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right)}}{e^{\sqrt[4]{2}\pi i\left( \sin \frac{\pi }{8}-i\cos \frac{\pi }{8} \right)}-e^{-\sqrt[4]{2}\pi i\left( \sin \frac{\pi }{8}-i\cos \frac{\pi }{8} \right)}}$$
$$=\frac{e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}{e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}=\frac{2e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-2e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}{2e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-2e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}$$
$$=\frac{\left( e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}} \right)\left( e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}} \right)-\left( e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}} \right)\left( e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}} \right)}{\left( e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}} \right)\left( e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}} \right)+\left( e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}} \right)\left( e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}} \right)}$$
$$=\frac{-\frac{1}{i}\cdot \left( -i\frac{e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}}{e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}} \right)-\frac{e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}{e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}}{-\frac{1}{i}\cdot \left( -i\frac{e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}}{e^{\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi i\sin \frac{\pi }{8}}} \right)+\frac{e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}-e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}{e^{\sqrt[4]{2}\pi \cos \frac{\pi }{8}}+e^{-\sqrt[4]{2}\pi \cos \frac{\pi }{8}}}}$$
$$=\frac{-\frac{1}{i}\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)-\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}{-\frac{1}{i}\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)+\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}=-\frac{i\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)+\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)}{i\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)-\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)}$$
$$=-\frac{i+\frac{\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)}{\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}}{i-\frac{\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)}{\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}}$$
Then the summ is equivalent to
$$S=\frac{i}{2}\ln \left( \exp \left( \frac{\pi i}{4} \right)\cdot -\frac{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right) \right)}{\sin \left( \sqrt[4]{2}\pi \left( \sin \frac{\pi }{8}-i\cos \frac{\pi }{8} \right) \right)} \right)$$
$$=-\frac{\pi }{8}+\frac{i}{2}\ln \left( \frac{i+\frac{\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)}{\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}}{i-\frac{\tan \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)}{\tanh \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}} \right)=\tan ^{-1}\left( \frac{\tan \left( \sqrt[4]{2}\pi \cos \frac{\pi }{8} \right)}{\tanh \left( \sqrt[4]{2}\pi \sin \frac{\pi }{8} \right)} \right)-\frac{\pi }{8}$$
$$=\tan ^{-1}\left( \frac{\tan \left( \sqrt[4]{2}\pi \frac{\sqrt{2+\sqrt{2}}}{2} \right)}{\tanh \left( \sqrt[4]{2}\pi \frac{\sqrt{2-\sqrt{2}}}{2} \right)} \right)-\frac{\pi }{8}=\tan ^{-1}\left( \frac{\tan \left( \pi \frac{\sqrt{\sqrt{2}+1}}{2} \right)}{\tanh \left( \pi \frac{\sqrt{\sqrt{2}-1}}{2} \right)} \right)-\frac{\pi }{8}$$ :D