A little Generalization :
Let $\alpha+\beta+\gamma=4C$
and $\displaystyle\tan\left(\frac{-\alpha + \beta + \gamma}4\right)\tan\left(\frac{\alpha - \beta + \gamma}4\right)\tan\left(\frac{\alpha + \beta - \gamma}4\right) = \cot C$
As $\displaystyle \frac{-\alpha+\beta+\gamma}4=\frac{-\alpha+4C-\alpha}4=C-\frac\alpha2,$
$\displaystyle \tan\frac{-\alpha+\beta+\gamma}4=\tan\left(C-\frac\alpha2\right)=\frac{\sin\left(C-\frac\alpha2\right)}{\cos\left(C-\frac\alpha2\right)}$
So, the problem reduces to $\displaystyle\frac{\sin\left(C-\frac\alpha2\right)\sin\left(C-\frac\beta2\right)\sin\left(C-\frac\gamma2\right)}{\cos\left(C-\frac\alpha2\right)\cos\left(C-\frac\beta2\right)\cos\left(C-\frac\gamma2\right)}=\cot C$
$\displaystyle\implies\frac{\sin\left(C-\frac\alpha2\right)\sin\left(C-\frac\beta2\right)}{\cos\left(C-\frac\alpha2\right)\cos\left(C-\frac\beta2\right)}
=\frac{\cos\left(C-\frac\gamma2\right)\cos C}{\sin\left(C-\frac\gamma2\right)\sin C}$
Applying $\displaystyle2\sin A\sin B,2\cos A\cos B$ formula,
$\displaystyle\implies\frac{\cos\frac{\beta-\alpha}2-\cos\frac{4C-\beta-\alpha}2}{\cos\frac{\beta-\alpha}2+\cos\frac{4C-\beta-\alpha}2}
=\frac{\cos\left(-\frac\gamma2\right)+\cos\frac{4C-\gamma}2}{\cos\left(-\frac\gamma2\right)-\cos\frac{4C-\gamma}2}$
Now as $\displaystyle\alpha+\beta+\gamma=4C,$ this becomes
$\displaystyle\implies\frac{\cos\frac{\beta-\alpha}2-\cos\frac{\gamma}2}{\cos\frac{\beta-\alpha}2+\cos\frac{\gamma}2}
=\frac{\cos\frac\gamma2+\cos\frac{\alpha+\beta}2}{\cos\frac\gamma2-\cos\frac{\alpha+\beta}2}$
Applying Componendo and dividendo,
$\displaystyle\implies\frac{\cos\frac{\beta-\alpha}2}{-\cos\frac{\gamma}2}
=\frac{\cos\frac{\alpha+\beta}2}{\cos\frac{\alpha+\beta}2}$
$\displaystyle\implies\cos\frac{\beta-\alpha}2\cos\frac{\beta+\alpha}2=-\cos^2\frac{\gamma}2 $
Applying $2\cos A\cos B,\cos2x=2\cos^2x-1,$
$\displaystyle\frac{\cos\alpha+\cos\beta}2=-\frac{1+\cos\gamma}2$
Here $\displaystyle C=\frac\pi4\implies \alpha+\beta+\gamma=4C=\pi$
If $\displaystyle C=-\frac\pi4\implies \alpha+\beta+\gamma=4C=-\pi\equiv\pi\pmod{2\pi}$
So, $\displaystyle\tan\left(\frac{-\alpha + \beta + \gamma}4\right)\tan\left(\frac{\alpha - \beta + \gamma}4\right)\tan\left(\frac{\alpha + \beta - \gamma}4\right)=-1$ and $\alpha+\beta+\gamma=-\pi$ or $\pi$ will satisfy the required identity
$\displaystyle \implies A+B+C=\frac{\alpha+\beta+\gamma}4=\frac\pi4$
and $\displaystyle A+B=\frac\gamma2\iff\gamma=2(A+B)=2\left(\frac\pi4-C\right)=\frac\pi2-2C $ etc.
$\cos\gamma=\cos(\frac\pi2-2C)=\sin2C$ then use http://mathworld.wolfram.com/ProsthaphaeresisFormulas.html. But things are shaping nicely, either I'm committing mistakes or
– lab bhattacharjee Jan 01 '14 at 19:05